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Abstract. Mechanisms of two-electron excitation of the(2s2)1S, (2p2)1D and (2s2p)1P
autoionizing states of helium are studied both experimentally and theoretically. It is shown that
an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive
parametrization of experimental cross sections of ionization, allowing one to extract cross sections
of excitation of autoionizing states. Using a new fitting procedure together with the proposed
parametrization made it possible to obtain the excitation cross sections and magnetic sublevel
population from electron spectra as well as, for the first time, to resolve the contribution of
resonance and interference components to resonance profiles. Interference with direct ionization
is shown to contribute significantly into resonance formation even for backward ejection angles.
We demonstrate theoretically that the excitation cross sections thus extracted from experimental
electron spectra hold information about the interaction of autoionizing states with an adjacent
continuum.

1. Introduction

The physical nature of autoionizing states lying above the ionization threshold is still not clear
enough. Traditionally, in atomic physics, only states with real energies have been considered
as true physical states, while any energy broadening has been attributed to interaction with
external particles or fields. From this point of view, autoionizing states (AIS) cannot be treated
as physical states, since they cannot belong to either the discrete or the continuous spectrum,
because their decay does not require any additional external interactions, but predominantly
occurs due to internal interactions within the atomic system. The classical theory of resonances
(Breit and Wigner 1936), widely used in atomic and nuclear collisions, introduced the idea
of a complex-energy state. This theory associates the position of the resonance with the real
part of the resonant state energy, and relates the intensity of the resonance to the cross section
of the resonant state excitation. However, this model can rarely be applied to autoionizing
resonances in photoionization, electron–atom and ion–atom collisions. Since excitation and
non-radiative decay of autoionizing states is coherent with direct ionization, the amplitudes
of resonant and direct ionization should be summed rather than the probabilities for the two
processes, which often changes the resonance shape and intensity. Formally, an autoionizing
state can be characterized by a linear combination of both discrete- and continuous-spectrum
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components, which is not an eigenfunction of a Hermitian operator (see the appendix), or,
alternatively, an eigenfunction of a non-Hermitian operator related to the physical Hamiltonian
of the system by a complex transformation (Mandl 1966, Reed and Simon 1978, Junker 1985);
such ‘wavefunctions’ do not produce any observables, in the standard interpretation. However,
having nearly the same position and width in different collision processes, AIS appear to be
more a feature of atomic structure than a property of atomic reactions, and one might wonder
whether considering such states may have physical meaning.

There are two approaches in atomic theory that address this question differently.Close-
coupling calculations do not consider AIS as true physical states, merely modelling the
resonance behaviour of the full (continuous-spectrum) wavefunction by introducing various
pseudostates (Burke 1965). In contrast, inconfiguration-interactioncalculations, AIS are
generally treated as truly physical discrete-spectrum states ‘embedded’ in the continuum.
Since excitation and non-radiative decay of such states is coherent with direct ionization, the
amplitudes rather than probabilities of resonant and direct ionization must be summed. This
leads to their interference, generally resulting in an asymmetric resonance shape, exhibiting
both the maximum and minimum being shifted from the resonance position (Fano 1961). The
width of the resonance is no longer related to the width of a single peak, and the intensity of the
resonance is no longer proportional to the population number of the resonant state (Åberg and
Howat 1982). Instead, one has to deal with additional resonance shape parameters, such as
the profile indexq in Fano’s theory, or the asymmetryA and yieldB parameters in the Shore
formula (Shore 1968), which essentially depend on the type of collision and hence cannot
describe atomic structure consistently. The total resonant yield can only provide a lower
estimate for the excitation cross section at asymptotic collision velocities (Godunovet al
1997a), so that AIS excitation cannot be uncoupled from direct ionization, and the existence
of AIS as true atomic states might seem doubtful.

This paper presents evidence that the cross sections of AIS excitation can be extracted
from experimental data under certain conditions, and hence it is still possible to consider AIS as
physically meaningful atomic states, since their physical characteristics are measurable despite
their complex nature. Once measured in a specific reaction, the values obtained can be applied
to other collision processes with the same projectile, to uncouple AIS excitation from decay.
In this way, one can study the interference of direct and resonant ionization in more detail.

We employ high-resolution electron spectroscopy of autoionizing and Auger resonances
excited in fast ion–atom collisions, which has proved to be a powerful method of atomic
structure research (Stolterfoht 1987). However, a high-quality experimental set-up, good
counting rate and high energy and angular resolution have to be combined with an appropriate
theoretical model of resonance phenomena, to allow the extraction of physically meaningful
data from experimental spectra.

In collisions with charged projectiles, the Coulomb interaction in the final state (CIFS)
between the scattered particle, ejected electron and residual ion can strongly influence both
direct ionization (Crooks and Rudd 1970) and resonance profiles in electron emission spectra
(Schowengerd and Rudd 1972, Bordenave-Montesquieuet al 1975, Arcuni and Schneider
1987, Moretto-Capelleet al 1996, Godunovet al 1997c). To reproduce experimentally
measured spectra, the description of the three-body Coulomb interaction of charged particles
in the ionization continuum must be as accurate as the description of two-electron excitation
(Godunovet al 1997c). This is a challenging problem to both theory and experiment because
of additional spectral features significantly complicating the analysis. In the conditions of
strong CIFS, resonance profiles may be very different from the familiar Fano shape (Arcuni and
Schneider 1987, Moretto-Capelleet al1996), and the traditional Fano or Shore parametrization
cannot be applied. The attempts to remove the discrepancies between theory and experiment
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by just shifting and broadening the resonance become meaningless if the resonance is split due
to the three-body interaction in the final state. Hence, the idea of a PCI shift (Barker and Berry
1966, Kuchiev and Scheinerman 1988) is only applicable for weak Coulomb interactions in
the final state.

Progress in this area has recently been achieved in a joint theoretical and experimental
study of the excitation of the autoionizing(2s2)1S, (2p2)1D and(2s2p)1P states of helium by
100 keV proton impact (Godunovet al 1997c; hereafter referred to as I). New high-resolution
(up to 68 meV) measurements of electron emission spectra made it possible to resolve the
near-lying(2p2)1D and(2s2p)1P resonances and reveal an evident distortion of the resonance
profiles by CIFS for forward electron ejection angles below 40◦. For larger emission angles the
resonance lineshape is close to a Fano profile. A new parametrization of resonance profiles,
developed on the basis of a three-body model, provided adequate processing of experimental
data. When the influence of CIFS is weak, the usual Shore parameters are reproduced as a
limiting case for the generalized formula. However, CIFS was found to influence the resonance
parameters even in the backward direction. This means that, for an adequate interpretation of
experimental data, CIFS should be taken into account for all angles in this region of collision
velocities. Considering the complexity of the problem the results of the calculations including
CIFS in both the resonant and direct ionization channels and allowing for the second-order
terms in the two-electron excitation amplitude agree well with the measurements for all three
autoionizing states.

Despite considerable progress in paper I in understanding the role of CIFS in the formation
of the autoionizing resonances of helium in electron emission spectra, advancement towards
gaining a deeper insight into mechanisms of double excitation and the interplay between
resonance and direct transitions demanded additional studies. The new parametrization
including CIFS employed five parameters (resonance position, resonance width and three
shape parameters), thus extending the usual four-parameter Shore and Fano parametrizations.
However, in paper I the fit processing of electron spectra which was used did not allow one to
extract meaningful values for all five parameters, especially for the parameter that has a link
to the cross section of the excitation of the autoionizing states. It was also not clear to what
extent such cross sections contain information about the interaction of autoionizing states with
the adjacent continuum. It is the purpose of this paper to address these questions. Preliminary
results were published in our recent paper (Moretto-Capelleet al 1997).

Here we present a comprehensive experimental and theoretical analysis of the excitation of
autoionizing states of helium by 100 keV proton impact, which is used to illuminate a number of
important theoretical issues. The new parametrization of resonance profiles distorted by CIFS,
as introduced in I, is shown to be a special case of a general approach, and its relation to the Shore
parametrization and other parametric expressions is discussed, extending the discussion already
given in I. The paper is organized as follows. Section 2 introduces a general procedure allowing
one to separate the excitation of autoionizing states from their interference with the continuum.
Section 3 demonstrates how these general formulae apply to proton impact ionization of helium.
Section 4 gives a brief discussion of the applicability of alternative parametrizations in theory
and experiment. In section 5, we describe a new fitting procedure for the processing of the
high-resolution spectra measured in I. In section 6 our computational model is briefly recalled.
Finally, section 7 contains the results of detailed calculations, experimental measurements and
their interpretation and resonance parameters, AIS excitation cross sections and relative phase
between resonant and direct ionization transitions are discussed. The appendix presents the
technical details of constructing wavefunctions and amplitudes in the diagonalization approach,
thus defining the cross section of excitation of autoionizing states that can be extracted from
experiments.
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2. General parametrizations

2.1. Cross section in the resonance region

In this section, we consider the general case of single ionization of an atomic target by some
external perturbation (collision with a charged particle, photoionization or any other projectile),
with a perturbation strong enough to allow the formation of autoionization states. That is, the
transition from the initial state to a final state may either be direct or involve multiple excitation
of the target with subsequent decay of the excited states into the same continuum. We will
describe the final state of the system (atomic core + ejected electron + scattered projectile)
with the total energyE and a collection of other quantum numbers,a (discrete or continuous),
necessary to uniquely identify the state. As discussed in Godunovet al (1997a), ionization
cross sections for many physically interesting situations can be expressed through a transition
amplitude as

σ(a,E) = C |t (a, E)|2 (1)

where the transition amplitudet (a, E) contains singularities

t (a, E) = tdir(a, E) +
∑
µ

tres,µ(a, E)

E − Eµ(a,E) + i0µ(a,E)/2
(2)

with the amplitudetdir(a, E) describing direct ionization and each term in the sum overµ

introducing an autoionization resonance. The form (2) of the transition amplitude implies that
the decay of the autoionizing states is close to exponential, so that all the non-exponential
dependence can be introduced through the energy dependence oftres,µ(a, E), Eµ(a,E) and
0µ(a,E). A detailed derivation of the continuum wavefunction and the expression for the
transition amplitude can be found in the appendix.

Combining equations (2) and (1), one may easily obtain

σ(a,E) = σdir(a, E) +
∑
µ

Aµ(a,E)εµ(a,E) +Bµ(a,E)

ε2
µ(a,E) + 1

(3)

with εµ(a,E) = (E − Eµ(a,E))/ 1
20µ(a,E), where

σdir(a, E) = C |tdir(a, E)|2 (4)

Aµ(a,E) andBµ(a,E) being the linear combinations of the productstres,µ(a, E)tres,ν(a, E)

andt∗dir(a, E)tres,µ(a, E) with the coefficients expressible throughεµν(a, E) = (Eµ(a,E) −
Eν(a,E))/

1
20µν(a, E) and0µν(a, E) = 0µ(a,E) + 0ν(a,E) (Ivanov 1989, I). Equation (3)

was originally derived by Shore (1968) for the most general case of an atom interacting with
radiation; however, equation (3) is valid for the cross sections of any other ionization process,
involving an arbitrary number of interfering autoionization states decaying into any number
of ionization channels, coupled by any kind of atomic interaction.

In the physically important case of isolated resonances, the parameters in (3) can be
expressed as (Godunovet al 1997a)

Aµ(a,E) = 4C

0µ(a,E)
Re(t∗dir(a, E)tres,µ(a, E)) (5)

Bµ(a,E) = 4C

0µ(a,E)

{
Im(t∗dir(a, E)tres,µ(a, E)) +

1

0µ(a,E)

∣∣tres,µ(a, E)
∣∣2} (6)

Though the following discussion does not depend on the isolatedness of the resonances and
the same results could be obtained in the general case as well (see I), the approximation
(equations (5) and (6)) seems to provide a good illustration of the principal ideas without too
much technical complexity.
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2.2. Energy dependence of the resonance parameters

The pole singularity is analytically separated in formula (3), so the rest of the energy dependence
is encapsulated in the coefficient functionsAµ(a,E),Bµ(a,E),Eµ(a,E),0µ(a,E). Various
cases of energy dependence are encountered.

Thesimplest assumptionwould be thatAµ andBµ as well asEµ and0µ are constant in the
resonance region. Most theoretical and experimental works on atomic ionization rely on this
approximation, which has proved quite satisfactory in low-energy photoabsorption problems.
However, already for the photoionization of atoms via autoionizing states converging to higher
ionization thresholds, when the problem becomes essentially multichannel, the deviation from
parametrization (3) with constantAµ andBµ becomes significant, which led some physicists
to model the variation of the fitting coefficients with energy in a wider range by their linear
or quadratic expansions in powers ofεµ (Ivanov and Senashenko 1983, Ivanov 1989). On the
other hand, in the collisions of charged particles with atomic targets, Coulomb interactions
in the final state have been known for a long time to significantly influence the profiles of
autoionization resonances (Schowengerdt and Rudd 1972, Bordenave-Montesquieuet al1975,
Heideman and van de Water 1981, Arcuni and Schneider 1987), resulting even in a deviation
of resonance profiles from the Fano shape (Arcuni and Schneider 1987, Moretto-Capelleet al
1996). The effect is more pronounced in differential cross sections. A semiempirical attempt
to account for post-collision interaction through introducing a resonance shift (Barker and
Berry 1966, Kuchiev and Scheinerman 1988) could only have a limited applicability (weak
CIFS), giving little new information about the physical mechanisms involved.

To reveal more details in the general picture of resonant ionization, one has to consider
amore specific energy dependenceof the coefficient functionsAµ(a,E) andBµ(a,E) in (3).
An intuitively appealing approach has been suggested in I, where the influence of CIFS on the
resonance ionization channel has been factored out as a complex factor

tres,µ(a, E) = βµ(a,E)eiαµ(a,E)t0res,µ(a) (7)

so that

t (a, E) = tdir(a, E) +
∑
µ

βµ(a,E)eiαµ(a,E)t0res,µ(a)

E − Eµ(a) + i0µ(a)/2
. (8)

Equation (8) agrees with the general principle of quantum scattering theory that virtual
interactions in the system must be asymptotically represented by a process-specific phase;
for instance, such a phase shift may be a consequence of the scattered projectile’s influence
on the decay of the autoionizing state (post-collision interaction). The exact form of functions
βµ(a,E) andαµ(a,E) depends both on the level of the description of the particles involved
(target, projectile, ejected electron) and on the adopted level of distinction between pre- and
post-collision interactions.

If the dominant part of the energy dependence in (8) is contained in the resonance
amplitude, then substituting (7) into (5) and (6), one can obtain

Aµ(a,E) = βµ(a,E)
[
Aint,µ(a) cosαµ(a,E)− Bint,µ(a) sinαµ(a,E)

]
(9)

Bµ(a,E) = βµ(a,E)[Aint,µ(a) sinαµ(a,E) +Bint,µ(a) cosαµ(a,E) +Bexc,µ(a)βµ(a,E)]

(10)

with

Aint,µ(a) = 4C

0µ(a)
Re(t∗dir(a)t

0
res,µ(a)) (11)
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Bint,µ(a) = 4C

0µ(a)
Im(t∗dir(a)t

0
res,µ(a)) (12)

Bexc,µ(a) = 4C

02
µ(a)

∣∣t0res,µ(a)
∣∣2 . (13)

As demonstrated in Godunovet al (1997a) and Moretto-Cappeleet al (1997), the parameter
Bexc,µ(a) can be reduced to the product0µσexc,µ, whereσexc,µ is the cross section of the
excitation of the autoionizing stateµ. One can expect that the peculiar kind of energy
dependence of the coefficient functionsAµ(a,E) andBµ(a,E) specified by equations (9)
and (10) may give the clue to experimentally determining the excitation cross section. Indeed,
accounting for (9), (10), equation (3) can be rewritten as

σ(a,E) = σdir(a, E) +
∑
µ

βµ(aεµ)

ε2
µ + 1

×[Aint,µ(a)f1(aεµ) +Bint,µ(a)f2(aεµ) +Bexc,µ(a)f3(aεµ)] (14)

where

f1(aεµ) = εµ cosαµ(aεµ) + sinαµ(aεµ) (15)

f2(aεµ) = cosαµ(aεµ)− εµ sinαµ(aεµ) (16)

f3(aεµ) = βµ(aεµ). (17)

Equation (14) can also be obtained directly from equations (1) and (8), by employing the limit
of isolated resonances.

2.3. Excitation cross section

If functions f1, f2 andf3 contain the dominant part of the energy dependence in (14) one
could use equation (14) as a parametric formula in interpreting ionization spectra. Knowing
the values ofBexc,µ and0µ thus obtained, one can derive the value ofσexc,µ.

A number of general conditions must be satisfied to make such an indirect measurement
possible. Thus, for weakly coupled systems,βµ ' 1 andαµ ' 0, so that (14) reduces to the
usual Shore parametrization withBµ = Bint,µ + Bexc,µ, and the excitation of autoionization
states cannot be separated from their interaction with the continuum and decay. This limit has
been studied extensively in I. It should be stressed that equation (14) must be considered as
a special case of Shore’s formula (3) with energy-dependent coefficients; in contrast, Shore
parametrization with constant coefficients appears to be a special case of the more general
parametrization (14). The assumption of constant parameters is just another constraint on the
energy dependence of the cross section, and it is well known that a constraint on a general
formula is stronger than the same constraint applied to a part of it.

We note that post-collision interaction must be strong enough to allow the splitting of
the coefficientBµ into interference and excitation parts. This implies a strong distortion of
the classical resonance shape as described by Shore (or equivalent Fano) parametrization with
constant coefficients. For a rapid variation ofαµ with energy near resonance, this distortion
cannot be reduced to a mere resonance shift, the oscillatory behaviour of sinαµ and cosαµ
resulting in additional extrema producing the effect of resonance splitting. With the phase
separation in (7) reflecting the kinematics of the problem, this effective splitting may have, in
the case of a charged projectile impact, much in common with the dynamic Stark effect. A
detailed investigation of this relation goes beyond the scope of this paper. However, we can note
that the perturbation from the projectile must be essentially non-stationary to allow separation
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of Bint,µ andBexc,µ—otherwise, it would result in a mere energy shift and broadening with
nearly constant phase, which returns us to the Shore formula.

To be suited for reliably extracting AIS excitation cross sections from experimental spectra,
functionsf1 andf2 must both be nearly orthogonal in energy tof3 in the resonance region.
For instance, forαµ linear in energy and slow-varyingβµ, terms withf1 andf2 in (14) give
the sine and cosine first-order components of a Fourier series, with the zero-order termf3

being automatically orthogonal to them. In general, any two of these functions may overlap;
the respective parameters would sum up in that case, with information loss. Simultaneously
fitting experimental spectra for a few values of the parametersa that exhibit different energy
behaviour off1, f2 andf3 would significantly improve the accuracy of the fitted parameters.
Therefore, differential cross sections provide a better source of data for indirect measurement
of AIS excitation cross sections, while integral cross sections leave too few parameters to
control.

3. Ionization by charged particle impact

As an illustration of the general assertions of the previous subsection, we consider the problem
of ionization of an atomic target in collisions with a charged particle. A solution of a three-
particle problem for the interaction of the scattered projectile, ejected electron and recoil ion
in the final state gives the transition amplitude as (Godunovet al 1989, I)

t (a, E) = Kdir(a, E)t
b
dir +

∑
µ

Kres,µ(a, E)
t0dec,µtexc,µ

E − Eµ + i0µ/2
(18)

wheretbdir is the direct ionization amplitude in the Born approximation,t0dec,µ is the amplitude
for non-radiative decay of an autoionizing state in an isolated atom,texc,µ is the excitation
amplitude for the autoionizing stateµ, andEµ, 0µ are the resonance position and resonance
width, respectively.Kdir(a, E) andKres,µ(a, E) are the factors allowing for CIFS in the direct
and resonance ionization amplitudes; their explicit form can be found elsewhere (Godunov
et al 1989, I). Equation (18) is a special case of equation (2), with

tdir(a, E) = Kdir(a, E)t
b
dir (19)

tres,µ(a, E) = Kres,µ(a, E)t
0
dec,µtexc,µ. (20)

In the kinematic region considered, one can use the eikonal limit of the above expressions,
obtaining (for details see I) for the functions in equation (7),

βµ(a,E) = exp(−ξ arctanεµ) (21)

αµ(εµ) = −ξ ln(ε2
µ + 1)/2 (22)

with

ξ = Zp

vf

(
Zt − vf

vpe

)
(23)

whereZp andZt are the charges for the projectile and the recoil ion accordingly,vf is the
velocity of the scattered particle,vpe is the relative velocity in final state between the scattered
particle and the ejected electron. And the double differential cross section of ionization can
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be written as (Godunovet al 1992, I)

d2σ

dEe d�e
= F(Ei, Ee, θe) +

∑
µ

exp(−ξ arctanεµ)

ε2
µ + 1

×{Aint,µ(Ei, θe)[εµ cos(αµ(εµ)) + sin(αµ(εµ))]

+Bint,µ(Ei, θe)[cos(αµ(εµ))− εµ sin(αµ(εµ))]

+Bexc,µ(Ei, θe) exp(−ξ arctanεµ)}. (24)

The parameters in equation (24) are determined as

Aint,µ(Ei, θe) = (2π)4m2
p
Kf ke

Ki
2 Re

{
K0

res,µ

∫
d�f (t

∗
dirtdec,µtexc,µ)

}
(25)

Bint,µ(Ei, θe) = (2π)4m2
p
Kf ke

Ki
2 Im

{
K0

res,µ

∫
d�f (t

∗
dirtdec,µtexc,µ)

}
(26)

Bexc,µ(Ei, θe) = (2π)4m2
p
Kf ke

Ki

∣∣K0
res,µ

∣∣2 ∫ d�f |tdec,µtexc,µ|2 (27)

whereKi andKf are the momenta of the incoming and outgoing projectile,ke is the momenta
of the ejected electron,mp is the mass of the projectile and d�f is the solid angle element
in the direction of the scattered projectile’s velocity. Obviously, equations (25)–(27) are a
special case of equations (11)–(13), the integrals representing a partial summation over the
configuration indicesa.

Separating out the angular dependence of the amplitudetdec,µ, one can link the parameter
Bexc,µ(Ei, θe) to the cross section of the excitation of the autoionizing stateµ. Indeed, the
amplitude of the non-radiative decaytdec,µ of an autoionizing state with the total orbital
momentumL can be written as (I)

tdec,µ = 2

0µ
iL exp(iδL)τdec,µYLM(�e) (28)

whereδL is the phase of the continuum wavefunction and the amplitudeτdec,µ determines the
resonance width in an isolated atomic system

0µ = 2π
∣∣τdec,µ

∣∣2 . (29)

Substituting these expressions into equation (27) and accounting for∣∣K0
res,µ

∣∣ = πξ

sinh(πξ)
(30)

one obtains

1
2(π0µ)Bexc,µ(Ei, θe)

sinh(πξ)

πξ
=

L∑
M=−L

σLMexc,µP
2
LM(cosθe) (31)

wherePLM(cosθe) is the associated Legendre function andσLMexc,µ denotes the cross section of
the target excitation to the state with total orbital momentumL and magnetic sublevelM. The
total AIS excitation cross section is given by

σexc(Ei) =
L∑

M=−L
σLMexc (Ei) = (2π)4m2

p
Kf

Ki

L∑
M=−L

∫ ∣∣tLMexc,µ

∣∣2 d�f . (32)
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That is, knowing the angular dependence of the resonance parameterBexc,µ(Ei, θe) from fitting
experimental spectra to the formulae (14) or (24), one can derive the cross sectionsσexc(Ei)

andσLMexc (Ei) for the excitation of the autoionizing state.
We stress once again that separating out the excitation part of theBµ coefficient does not

mean that there is no interference between the direct and resonant ionization; on the contrary,
one has to add interactions between the ejected electron, residual ion and scattered projectile
to achieve that separability. As shown in the appendix, this means more correlation in the
continuum, with all the discrete–continuum interference preserved.

4. Other parametric formulae

While Shore parametrization (3) contains two profile parameters for each resonance,
parametrization (14) introduces three parameters for each resonance. However, additional
parameters cannot guarantee the possibility of extracting new physical information by
themselves. One also has to relate theoretically the parameters to some quantities possessing a
clear physical sense. Thus, the semiempirical approximation of the energy dependence of the
coefficient functionsAµ(a,E) andBµ(a,E) in (3) by polynomials inεµ may be quite efficient
for the quantitative description of experimental spectra, but it gives little for understanding the
physics of autoionization, and it is bound to fail to describe some important features arising from
the non-analytic behaviour of the transition amplitude (e.g. cusps). Still, phenomenological
formulae like that may be useful for applications requiring large banks of atomic data (Godunov
and Ivanov 1999).

A different kind of many-parameter formulae is known in the theory of partial cross
sections of resonant ionization. Thus, Fano’s (Fano 1961) profile indexqp for an isolated
resonance in a partial cross section is related to the profile index for the corresponding total
cross sectionq by the expression (Ivanov 1989)

qp = 1
2 [qδ − (2− q)/δ] +

√
1
4 [qδ + (2− q)/δ]2 + (1− q)2 (33)

with an additional dimensionless parameterδ that can either be calculated theoretically or
extracted from experimental data for total and partial cross sections; however, sinceδ is
expressed through both the total and partial widths as well as the on-shell parts of the total and
partial amplitudes of indirect AIS excitation through the continuum (Godunovet al 1997a),
extracting more information about the separate amplitudes or phases can only be possible
in a few very special cases (Ivanov 1989). One could also recall the well known Starace
parametrization for a single-channel cross section in multichannel photoionization (Starace
1977)

Aµ(a,E) = σdir(a, E)2
[
qµ Reγµ(a)− Im γµ(a)

]
(34)

Bµ(a,E) = σdir(a, E)
{−2

[
qµ Im γµ(a) + Reγµ(a)

]
+ (q2

µ + 1)
∣∣γµ(a)∣∣2} (35)

closely resembling equations (9) and (10). However, this parametrization encounters the same
interpretational problems as formula (33). Since equation (3) holds for any kind of cross
section (partial and total, differential and integral), no ‘full experiment’ (Starace 1977, Krause
et al1983) can separate AIS interference with the continuum from AIS excitation, unless there
is a strong energy dependence of the relative phase introduced by equation (7). In other words,
the processes of excitation and decay of autoionizing states must be essentially influenced by
an inhomogeneous external potential with an inhomogeneity length comparable to the size of
the excited target, in which case the gross factoring out of direct ionization as in equations (34)
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and (35) is impossible. For the proton-impact ionization of helium considered in this paper,
the above-mentioned potential is associated with the projectile’s current.

Every parametrization may have a number of alternative formulations, which do not
introduce a different level of consideration, but rather provide a variety of presentations
stressing different aspects of the same theory. Thus, the Shore formula (3) is often rewritten
in the Fano–Cooper form (Fano and Cooper 1963)

σ = σdir

{(
1−

∑
µ

ρ2
µ

)
+
∑
µ

ρ2
µ

(εµ + qµ)2

ε2
µ + 1

}
(36)

where functionsqµ = qµ(a,E) andρ2
µ = ρ2

µ(a,E) are related to the Shore coefficients by
the equations

Aµ = 2ρ2
µqµσdir (37)

Bµ = ρ2
µ(q

2 − 1)σdir. (38)

The form (36) is equivalent to (3), being as general. It may be preferable since the parametersqµ
andρ2

µ are dimensionless, which makes the comparison of different targets simpler. However,
it lacks the linearity of equation (3), and the relation between the parameters of various kinds
of cross sections becomes less straightforward.

A number of alternative forms can be derived for formula (14) as well. Introducing
dimensionless parametersRµ andδµ with equations

Aint,µ = βµBexc,µRµ cosδµ (39)

Bint,µ = βµBexc,µRµ sinδµ (40)

or, inversely,

Rµ =
√
A2

int,µ +B2
int,µ

βµBexc,µ
(41)

δµ = arctan
Bint,µ

Aint,µ
+ πn (n = 0, 1, . . .) (42)

one can rewrite equation (14) as

σ = σdir +
∑
µ

β2
µBexc,µ

ε2
µ + 1

{
1 +Rµ[εµ cosωµ + sinωµ]

}
(43)

whereωµ = δµ + αµ. Thus, for the double-differential cross section of ion-impact ionization
of helium considered in the previous section, we obtain

d2σ

dEe d�e
= F(Ei, Ee, θe) +

∑
µ

exp(−2ξ arctanεµ)Bexc,µ(Ei, θe)

ε2
µ + 1

× {1 +Rµ(Ei, θe)
[
εµ cosωµ(Ei, θe) + sinωµ(Ei, θe)

]}
(44)

withωµ = δµ−ξ ln(ε2
µ+1)/2. In a slightly different form, this expression has been introduced

in Godunovet al (1992).
The resonance terms in equation (43) are proportional toBexc,µ which is related to the

AIS excitation cross section; that is, the classical Breit–Wigner form of the resonance becomes
factored out, and the whole effect of the autoionizing state’s interference with the continuum,
including CIFS, is contained in the dimensionless quantitiesRµ andαµ. This, as in the case
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of Fano and Shore parametrizations, may make these parameters more suited for comparing
the results for different targets excited by different projectiles. Such dimensionless quantities
may also be of importance for investigating the common features of reactions with massive
projectiles and photoionization. Since the ratios of measurable quantities do not contain any
constant calibration factors, the systematic error introduced through the calibration procedure
is eliminated, which makes dimensionless quantities popular among experimentalists too.

5. Fitting procedure

The profiles of the(2s2)1S, (2s2p)1P and(2p2)1D resonances, measured in I, have been
analysed using formula (24). In I this formula was proved to be adequate to reproduce the
observed profiles. In that paper each electron spectrum was fitted separately. The structure
of relation (24) makes it apparent that for each resonance we have to adjust three parameters
Aint,µ(Ei, θe), Bint,µ(Ei, θe) andBexc,µ(Ei, θe) for each resonance, each of them having its
own (unknown) angular dependence. In this way only one electron spectrum can be fitted
at once and it appears that no reliable solution can be found for these three parameters; it
was observed that onlyAint,µ(Ei, θe) and the sum [Bint,µ(Ei, θe) + Bexc,µ(Ei, θe)] are reliable
(as used in I). The difficulties which were encountered can be illustrated in the following
way. The possibility to extract all three resonance parametersAint,µ(Ei, θe), Bint,µ(Ei, θe)

andBexc,µ(Ei, θe) from a fit of experimental electron spectra reliesa priori on the fact that
the functionsf1(Ei, θe, εµ), f2(Ei, θe, εµ) andf3(Ei, θe, εµ) in equation (14) have their own
specific dependence against the electron energy. In figure 1 we plot the three whole functions
[(f3(Ei, θe, εµ)/(ε

2
µ + 1))f ], with f = f1, f2 or f3 for three angles in regions of strong and

small CIFS (10◦, 90◦ and 160◦, respectively). These profiles, not convolved by the apparatus
function, are given for the S resonance; they are almost the same for the other two resonances,
apart from the width, which is smaller in the latter case because of the values of the natural
widths0µ. The multiplying factor ofAint,µ(Ei, θe) always has a typical energy dependence
which helps us in extracting this parameter at all angles, even with the usual fit as used in
I. On the other hand, the multiplying factors ofBint,µ(Ei, θe) andBexc,µ(Ei, θe) can only be
distinguished at forward angles; this means that using the usual fitting procedure only the sum
Bµ = Bint,µ + Bexc,µ can be extracted in the backward direction. Then, if we want to extract
all three parameters from the experimental electron spectra, some other procedure should be
found to isolate eachBint,µ andBexc,µ contribution.

Therefore, another fitting method was developed in this paper to extract the values of all
three resonance parameters (see also Moretto-Capelleet al1997). Indirectly, we take advantage
of the decoupling ofBint,µ(Ei, θe) fromBexc,µ(Ei, θe) in equation (24), compared to the Shore
form of theB parameter (6), by using the definition ofBexc,µ(Ei, θe) as given by (31). Relation
(31) says that the angular dependence ofBexc,µ(Ei, θe) is known and given by the Legendre
polynomial provided that the excitation cross sectionsσLMexc (Ei) of the magnetic sublevels
are determined. Therefore, instead of extracting the resonance parameterBexc,µ(Ei, θe) we
consider theσLMexc (Ei) cross sections as new adjustable parameters. At first sight this seems a
strange idea since instead of three independent parameters for each resonance, which cannot
already be extracted from a single spectrum in a reliable way as just mentioned, we now
increase their number through the excitation cross sections of individual magnetic sublevels.
The key point is that the sublevel excitation cross sections are independent of the angle and
must be the same in the description of any electron spectrum measured at any angle. Therefore,
the new fitting procedure which has been used consists in fitting together the maximum number
of electron spectra, covering the whole angle range, to put strong constraints on the adjustable
parameters:Aint,µ(Ei, θe) andBint,µ(Ei, θe) are independent adjustable parameters at each
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Figure 1. Examples of the electron energy dependence of the factors [(f3(Ei , θe, εµ)/(ε
2
µ + 1))f ],

with f = f1(Ei , θe, εµ), f2(Ei , θe, εµ) andf3(Ei , θe, εµ) for (2s2)1S resonance of helium excited
by 100 keV proton impact. Electron emission angles are 10◦, 90◦ and 160◦. Full curve, factor for
theBexc parameter; broken curve, factor for theBint parameter and dotted curve, factor for theAint
parameter from equation (24).
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angle, whereas theσLMexc (Ei) cross sections must fit the whole set of electron spectra. Therefore,
the values ofσLMexc (Ei) extracted from forward emission angles help to separate the resonance
and interference components in the backward direction (region of small CIFS). The power of
the method is thus enhanced. Up to a maximum of 15 spectra were fittedtogether. Various
combinations of spectra have been tried, each of them defining a fitting set which always covers
the whole angular range. The resonance positionEµ and width0µ were taken from theoretical
calculations (see I). The direct ionization cross sectionF(Ei, Ee, θe) was approximated by a
first-order polynomial. The resonance parameterBexc has then be deduced from the adjusted
σLMexc values using formula (31).

This new fitting method already strongly restricts the variation of the adjustable parameters
which can be used. Two additional constraints have been added in the fitting procedure: (a)
the excitation cross sectionσLMexc (Ei)must be positive; (b)

√
Aint,µ(Ei, θe)2 +Bint,µ(Ei, θe)2 6

2
√
Bexc,µ(Ei, θe)F (Ei, Ee, θe) where the direct ionization cross sectionF(Ei, Ee, θe) is

determined at the resonance positionEe = Eµ. The latter condition was simply derived
from the definitions of the resonance parameters. The new fitting procedure has been proved
to be reliable; it gives stable values of the resonance parameters when different sets of spectra
are used; averaged values of the parameters obtained with various combinations of spectra will
be considered in the following.

6. Computational model

Our computation model in this work is nearly the same as in I except that most calculations have
been carried out with a multi-configuration Hartree–Fock function. However, new collision
characteristics have been calculated: cross sections for the double-electron excitation of
autoionizing states, resonance parametersBint,µ(Ei, θe) andBexc,µ(Ei, θe) separately, relative
phaseδµ(Ei, θe) between the direct and the resonance ionization.

7. Results

In paper I, we tested the adequacy of the parametrization (24) to describe the observed
lineshapes in the kinematic conditions under investigation. It succeeded in reproducing all
the measured lineshapes. We focused on the influence of CIFS on the following two resonance
parametersAint,µ(Ei, θe) andBµ(Ei, θe) = Bint,µ(Ei, θe) + Bexc,µ(Ei, θe). The importance of
second-order terms in the calculated excitation amplitudes was also stressed. In this paper, we
apply the new fitting procedure described above to the high-resolution electron spectra in the
vicinity of the low-lying autoionizing(2s2)1S,(2s2p)1P and(2p2)1D states of helium excited
by 100 keV proton impact for emission angles between 10◦ and 160◦, comparing the results
with our theoretical calculations for the three resonance parametersAint, Bint andBexc as well
as the two-electron excitation cross sectionsσLMexc .

7.1. Resonance profiles

The extraction of the two groups of resonance parameters from electron spectra in the conditions
of strong CIFS,Aint andBint, on one hand, andBexc, on the other hand, allows us to investigate
the relative contributions of the interference and excitation terms, respectively, to the internal
structure of the observed resonance profiles. Since excitation cross sections do not depend on
the electron emission angle, we can use the values ofBexc extracted from forward-emission
data to also separate the resonance and interference components in the region of small CIFS
(e.g. for backward emission), where normally one could only obtainBµ = Bint,µ + Bexc,µ, as
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Figure 2. Experimental electron spectra in the region of the(2s2)1S, (2p2)1D and (2s2p)1P
resonances of helium excited by 100 keV proton impact, at the electron ejection angles of 15◦,
50◦ and 130◦. Energy resolution 68 meV. Experiment: full circles. Fitting results: full curve,
spectra fitted with the full formula (24); broken curve, the contribution of interference with direct
ionization; chain curve, resonance contribution.
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indicated in section 2. In figure 2, we present experimental electron spectra in the region of
the (2s2)1S, (2p2)1D and(2s2p)1P resonances of helium excited by 100 keV proton impact
fitted with the parametrization (24). As can be seen, interference of the direct and resonance
transitions is almost completely responsible for the formation of the autoionization resonance
profiles at small emission angles. As the emission angle increases, the interference contribution
becomes smaller. Still, it remains comparable with the resonance contribution even for
backward emission. A remarkable effect of the ‘reversal’ of the interference contribution in the
transition from small to large emission angles should be attributed to the angular dependence
of the amplitudes of direct ionization being combined with the angle-independent amplitudes
of two-electron excitation.

It is clearly observable that the asymmetry of the resonance and interference contributions
is small at large electron emission angles, where resonance profiles form as a result of enhancing
(for the (2s2)1S resonance) or compensating (for the(2p2)1D and (2s2p)1P resonances)
summation. That is why the intensity of the relatively ‘weak’(2s2)1S resonance can become
nearly the same as the intensity of the ‘strong’(2s2p)1P resonance for emission angles above
130◦.

At large emission angles (figure 2(c)) the present experimental data clearly illustrate for
the first time that the interference of direct and resonance channels can play an important role
even when the resulting resonance shapes are nearly symmetrical. This indicates that in many
collisional situations, when it is known that direct ionization coexists with the resonant one,
calculations cannot neglecta priori the coupling of these two channels even when experimental
electron spectra do not reveal any clear manifestation of interference patterns. Several examples
can be found in earlier works which concerned the double excitation of helium at high-velocity
proton impact (see references in I) as well as the transfer excitation in the He+ + He system
(Itoh et al 1985, Gayetet al 1995); in the latter case the possibility of interference between
transfer ionization and transfer excitation amplitudes has been recently incorporated into the
calculations of Bachauet al (1997).

It is worth emphasizing that despite the fact that the three spectra shown in figure 2 are
characterized by very different relative intensities and lineshapes, the fit which is shown was
achieved by keeping the excitation cross sectionσLMexc constant, independent of the emission
angle as it must be. As just explained, the strong observed differences in the amplitudes of the
observed resonances come from the interference terms which are strongly angle dependent.

7.2. Resonance parameters

The angular dependences of resonance parametersAint,Bint andBexc for the(2s2)1S,(2s2p)1P
and(2p2)1D states are presented in figures 3–5, respectively.

There is no need to comment once again here onAint since this parameter was already
discussed in I and the experimental values obtained with the new fitting method are very
near the values reported in I. On the other hand, the new fitting procedure also allows us to
extract the absolute value and the angular behaviour ofBint which can be compared with those
of Aint. Extracting both parameters from electron spectra has also allowed us to derive the
relative phaseδµ(Ei, θe) (see the definition given in equation (42); the discussion of this new
quantity will be discussed later (see section 7.4)). It is found that both the magnitude and
the angular dependence of parametersAint andBint are very similar; both oscillate strongly
in the forward angle range and a slight dephasing is measured between them. The full
calculation, employing second-order amplitudes as well as CIFS, is in qualitative agreement
with experiment for all three resonances. The extrema of the calculated oscillations become
nearer the experimental ones when including second-order terms. Second-Born calculations
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Figure 3. The angular dependence of resonance parametersAint , Bint andBexc for the (2s2)1S
state of helium excited by 100 keV proton impact. Experiment: full circles. Theory: full curve,
full calculation; broken curve, calculation without CIFS; chain curve, calculations with CIFS and
without the second-order terms in the amplitude of two-electron excitation. ParameterBexc has
been multiplied by sinh(πξ)/(πξ) to factor away the CIFS dependence.
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Figure 4. The same as figure 2 for the(2s2p)1P state of helium.

without CIFS fail to reflect the actual dependences at all, while first-Born calculationswith
CIFS reproduce much of the oscillatory structure observed at small ejection angles. Some
discrepancy between experiment and theory is noted for the damping of the oscillations when
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Figure 5. The same as figure 2 for the(2p2)1D state of helium.

the emission angle increases; the experimental one is stronger for the(2s2)1S and(2s2p)1P
resonances (30◦–60◦) angle range in figures 3 and 4, respectively (see also the related discussion
in I).
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The parameterBexc has not been discussed before, and that is why we will pay more
attention to it here. In figures 3–5, the reduced values ofB red

exc are shown, obtained by
multiplyingBexc by the factor sinh(πξ)/(πξ) (see equation (31)) which results in a cancelling
of purely kinematic variations due to CIFS. According to equation (31), the resulting angular
dependence must be determined by a sum of the squares of associated Legendre polynomials
P 2
LM(cosθe) weighted with partial cross sectionsσLMexc of two-electron excitation of the target

to the magnetic sublevelM.
For the(2s2)1S state, withL = 0, the reducedBred

exc does not depend on the angle, only the
excitation cross sectionσ 00

exc being defined. The second-Born calculation is visibly closer to
experiment than the analogous first-Born calculation. This implies that the electron density is
rather diffused in this state, and hence must be significantly influenced by electron correlations.
The polarization of the target by the projectile, partially accounted for in the second-order terms,
is more pronounced in the interference coefficients, at large ejection angles, where one needs
higher-order terms to describe experimental results.

The angular behaviour of the(2s2p)1P state clearly reflects its multiplicityL = 1. A
remarkable agreement between theory and experiment is observed for this resonance. From
photoionization studies, it is well known that the coupling of the(2s2p)1P state with the
ionization continuum can be well described already in the lowest order, and correlations in
the adjacent continuum are not significant for the decay process. However, the geometry of
the state and its alignment by the projectile makes autoionization essentially coupled with the
scattered projectile, which manifests itself in the discrepancies between theoretically calculated
interference parametersAint andBint and the experimental data for forward ejection.

Calculation results for the(2p2)1D state indicate that there is a strong contribution of
higher-order polarization effects in the target’s excitation. The second-Born calculation is not
enough to reproduce the observable behaviour of the excitation cross section. Experimental
points seem to reveal anL = 1 rather than anL = 2 multiplicity, which might mean that
the higher-order terms would sum up with peculiar phases, with the interference terms in the
ionization cross section hence being very sensitive to the theoretical model used.

7.3. Cross sections of two-electron excitation

To explore the physical mechanisms beyond the process of two-electron excitation, we have
performed a number of calculations, using a target excitation amplitude of the form

texc= td1 + td2 + tc1 (45)

which includes the first-Born excitation amplitudetd1, the second-Born amplitudetd2describing
two-step transitions through singly excited states and the first-Born amplitudetc1 corresponding
to the channel of excitation (specific for autoionizing states) via the adjacent continuum. The
separation of the components of the full excitation amplitude is discussed in more detail in the
appendix. The role of electron correlations in the target was investigated by comparing the
results obtained with two sets of discrete-spectrum wavefunctions representing autoionizing
states: one set was constructed from Slater-type wavefunctions within the configuration-
interaction approximation (CI), and the other was calculated using the multiconfiguration
Hartree–Fock method (MCHF). The total excitation cross section can be expressed through
the sum of individual contributions and cross terms:

σexc=
∑
i

σi +
∑
i<j

σi,j (46)
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with

σi = (2π)4m2
p
Kf

Ki

L∑
M=−L

∫
|ti |2 d�f (47)

and

σij = (2π)4m2
p
Kf

Ki

L∑
M=−L

∫
2 Re(ti t

∗
j ) d�f (48)

wherei, j = d1, d2, c1.

Table 1. Cross section (in units of 10−20 cm2) for two-electron excitation of the autoionizing
(2s2)1S,(2s2p)1P and(2p2)1D states of helium excited by 100 keV proton impact.

(2s2)1S (2s2p)1P (2p2)1D

CI MCHF CI MCHF CI MCHF

σd1 8.62 4.54 7.05 5.99 1.40 0.32
σd2 2.54 2.35 5.22 5.06 7.97 7.65
σc1 1.99 1.97 2.51 2.92 2.53 2.08
σd1,d2 0.72 0.55 0.90 0.74 1.01 0.46
σd1,c1 −0.93 0.66 0.65 1.97 −1.16 −0.17
σd2,c1 −4.29 −4.10 −6.51 −6.72 −8.11 −7.33

σth 8.64 5.97 9.81 9.96 3.64 3.00
σexp 3.40 8.80 9.00
σexp,Schulz 9.70 21.0a

a The sum of (1P +1D).

The results for the total excitation cross sections and their components are presented in
table 1 along with our experimental data. The figures differ a little from those presented in
Moretto-Capelleet al (1997), since more accurate summation algorithms have been used here.
In table 1 we also show experimental data of Schulzet al (1995) derived by an analysis of the
resonance yield in energy loss spectra as a function of the scattering angle. Owing to the low-
energy resolution the(2p2)1D and(2s2p)1P resonances were unresolved in Schulzet al(1995).
Therefore, the sum of cross sections for these states is displayed which is in good agreement
with our experimental results. For(2s2)1S there is a difference between the two experimental
cross sections, but the experimental error is remarkable for energy loss measurements (9.7±7.0
in units of 10−20 cm2).

While the theoretical estimate of the total excitation cross section for the(2s2p)1P
resonance agrees satisfactorily with experiment, the cross section for the(2s2)1S state is
overestimated and for the(2p2)1D state is significantly underestimated. Such a discrepancy
is due to the higher-order contributions not included in the model. As noted in the previous
section, it can be seen thatσd1 plays an important role in the excitation of the(2s2)1S and
(2s2p)1P resonances, but not for that of(2p2)1D (see also I).

Among the qualitative conclusions one could draw on the basis of table 1, we would point to
a highly destructive (for a positive projectile) interference between the two-step mechanism and
the continuum-mediated excitation, as indicated by theσd2,c1 cross term. For all the resonances
considered,σd2 prevails overσc1, that is, the amplitudetd2 is greater thantc1 in absolute value;
however, the continuum component of the autoionizing state, as defined by equation (A33),
seems to screen the effect of the projectile and hence damps the two-step process. The two-step
td2 and continuum-mediatedtc1 channels proved to be almost insensitive to the quality of the
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orbitals. In contrast, the cross sectionσd1 (and its interference with the other channels) requires
taking account of the correlation effects accurately.

We can see that two-electron excitation is a complex process involving many interfering
mechanisms, and it would be an oversimplification to identify an autoionizing state with a
doubly excited discrete-spectrum state in the target, retaining only the amplitudestd1 andtd2

in (45). Most theoreticians stick to this approximation, since properly accounting for other
mechanisms requires much analytical and computational effort. However, as our analysis
shows, one can obtain only random agreement with experiment without a correct description
of the excitation processes involved. Thus, the close reproduction of our experimental data
(Moretto-Capelleet al 1997) by Bodeaet al (1998), who did not account for the embedding of
autoionizing states in the continuum at all, could serve as an example of how good agreement
with experiment may indicate incompleteness of the theoretical model rather than its adequacy.

Table 2. Sublevel populations (M = 0,±1,±2) in %.

(2s2p)1P (2p2)1D

CI MCHF Expt CI MCHF Expt

d1 56 44 59 41 32 55 13 18 58 24
d2 71 29 71 29 41 48 11 41 48 11
c1 49 51 49 51 20 59 21 19 59 22

Total 53 47 54 46 51 49 53 40 7 54 38 8 32 57 11

Table 2 presents the calculated values for the population of magnetic sublevels of the
(2s2p)1P and(2p2)1D states, both total and by excitation channel, compared with experiment.
Generally, the population distributions appear to be less sensitive to the choice of the orbitals
(cf CI or MCHF results). The first-order mechanism is rather close to experiment; this is
particularly remarkable for the d1 CI calculations which reproduce very well the experimental
sublevel populations even for the(2p2)1D state. This agreement seems fortuitous since a
poor agreement was already noted with the Born I calculations forAint andBint (figure 4)
and for the total excitation cross section (table 1). In the theoretical model used, two-step
excitation overpopulates the sublevel withM = 0, which indicates the necessity of accounting
for multipole polarization of the target, especially in the case of the(2p2)1D state.

7.4. Relative phase

The dimensionless phase parameterδµ(Ei, θe) defined by equation (42) could be used to
study resonance profile formation. In the triply differential cross section the relative phase
δµ(Ei, θe, θf ) has a clear meaning of a relative phase between the direct and resonant ionization
amplitudes (Godunovet al1990). On the other hand, the relative phaseδµ(Ei, θe)which can be
defined from the doubly differential cross section is not straightforward since the interference
terms inAint andBint result from an integration over the scattering angle.

Theoretical and experimental angular dependences ofδµ(Ei, θe) for the(2s2)1S,(2s2p)1P
and (2p2)1D resonances are given in figure 6. The remarkable fact is that, despite the
discrepancies with the experiment in the other resonance parameters, excitation cross sections
and magnetic sublevel population, theoretical phases are in good agreement with experimental
data. This might mean that parametrization (43) is fundamental enough, reflecting some
essential features of the ionization process. In the back hemisphere, the calculation without
CIFS already provides a reasonable estimate of the phase; however, the account for post-
collision kinematics is important to describe the behaviour of the phase for ejection angles
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Figure 6. Relative phaseδ for the autoionizing(2s2)1S, (2s2p)1P and(2p2)1D states of helium
excited by 100 keV proton impact. Experiment: full circles. Theory: full curve, the full calculation;
chain curve, calculation CIFS included in the resonance channel only; broken curve, calculation
with CIFS in the direct ionization channel only; dotted curve, calculation without CIFS in the
second Born approximation.
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below 60◦. Including CIFS in the resonance terms of the total ionization amplitude would
qualitatively reproduce the observed phases, though it is necessary to include CIFS in direct
ionization amplitudes too, to attain a quantitative agreement; still, accounting for CIFS in
direct ionization alone cannot reproduce the observable behaviour.

The angular dependenceδµ(Ei, θe) characterizes the dependence of the resonance form
on collision kinematics. The similarity of that dependence for the resonances of quite different
symmetry and structure indicates that the major contribution to the phase comes from the
interactions in the asymptotic region far from the residual ion, and the structure of the
autoionizing state and its formation processes cannot be clearly reflected in that quantity.
The form of the dependence suggests that there is a universal kinematic component that can
be excluded from the phase (42) to obtain a different parameter that would provide a more
sensitive test of the interplay of various atomic processes (Godunovet al 1990).

8. Conclusions

We have addressed the problem of extracting information about the cross sections of AIS
excitation from experimental data on heavy particle collisions with atoms. The principal
results may be summarized as follows.

(a) AIS can be considered as true atomic states, albeit of a particular sort. Using a specially
designed technique, one can measure the energies, widths and excitation probabilities of
AIS regardless of the channels of their subsequent decay.

(b) Separation of AIS excitation from direct ionization and decay can only be performed under
the conditions of the strong influence of a rapidly varying external field on the AIS decay
process, resulting in deviations of the resonance shape from Fano/Shore profiles, which
can be described by additional profile parameters. Fitting experimental data with the thus
obtained parametric formulae, one can determine excitation cross sections for individual
magnetic sublevels of AIS.

(c) The general approach suggested here has been applied to the reaction of single ionization
of helium by a heavy charged projectile, where the explicit analytical expressions for
the kinematic factor could be obtained in the eikonal limit. The profile parameters
for the (2s2)1S, (2p2)1D and (2s2p)1P resonances excited by 100 keV proton impact
have been calculated theoretically, and the cross sections of two-electron excitation and
populations of the magnetic sublevels of the(2p2)1D and (2s2p)1P states have been
estimated theoretically.

(d) A new parametric formula has been used to process experimental high-resolution spectra
of electron emission at different angles, which has allowed us to extract theoretically
introduced quantities from the experimental data. The results for profile parameters,
excitation cross sections, sublevel populations and relative phases have been compared
with experiment, and the underlying physical mechanisms have been discussed. The
overall agreement with experiment supports the applicability of the approach suggested.
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Appendix. Resonant ionization in the diagonalization approach

The diagonalization method was originally developed in a differential formulation by Balashov
et al (1968). It was subsequently complemented by an integral formalism by Ivanov and
Senashenko (1983) and then Howatet al (1978). The equivalence of the two forms has
been demonstrated by Ivanov (1989) for a wide class of physical problems. Both differential
(Godunovet al 1989) and integral formalisms have been developed for our calculations, and
we could use both, for reasons of convenience. An integral approach will be used here, to
make the presentation of results more concise and transparent.

The helium atom and a structureless projectile form a four-particle system, which can be
described by the Hamiltonian in the simplified Jacobi coordinates

Ĥ =
2∑
i=1

(
− 1

2µt
∇2
ri
− Zt

ri

)
+

1

|r1− r2| −
1

2µp
∇2
R −

2∑
i=1

Zp

|ri −R| +
ZtZp

R

= ĥ1 + ĥ2 + V̂12 + ĥp + V̂p = Ĥt + ĥp + V̂p. (A1)

The eigenfunctions of this Hamiltonian depend on the quantum numbers referring to both the
target electrons and the projectile. We denote the momentum of the projectile byK, the total
energy including the kinematic energy of the projectile byE and all the other discrete and
continuous parameters (e.g. the electron emission angle) bya.

The final state of ionization must satisfy the Schrödinger equation

(E − Ĥ )|aKE) = 0. (A2)

Following the traditional procedure of Fano (1961), we seek the solution of (A2) in the form

|aKE) =
∑
λ

∫
dK̃ |λK̃〉3λ(K̃; aKE) +

∑
b

∫
dẼ

∫
dK̃ |bK̃Ẽ〉Cb(K̃Ẽ; aKE). (A3)

States|λK̃〉 include no outgoing waves for target electrons and represent the states with no
free electrons (closed channels); states|bK̃Ẽ〉 imply one outgoing wave for an atomic electron
and represent the states of a singly ionized target interacting with a scattered projectile (open
channels). We neglect double-ionization states in expansion (A3), as well as the states related
to the formation of a quasi-molecule. Since the basis sets for both closed and open channels
can be chosen arbitrarily, we fix the vector sets by using the conditions

〈λK ′|Ĥ − E|νK ′′〉 = (Eλ(K)− E)δλνδ(K ′ −K ′′) + Vλν(K
′,K ′′;E) (A4)

〈bK ′E′|Ĥ − E|cK ′′E′′〉 = (E′ − E)δbcδ(K ′ −K ′′)δ(E′ − E′′) (A5)

〈λK ′|Ĥ − E|bK ′′E′′〉 = Vλb(K ′,K ′′E′′;E) (A6)

〈bK ′E′|Ĥ − E|λK ′′〉 = Vbλ(K ′E′,K ′′;E) = V ∗λb(K ′′,K ′E′;E). (A7)

In general, we do not demand orthogonality of open and closed channels, and the only restriction
on the basis vectors in the closed-channels subspace is the condition of ‘weak’ orthonormality:

〈λK ′|νK ′′〉 = δλνδ(K ′ −K ′′) +Oλν(K
′,K ′′). (A8)

As has been demonstrated by Ramaker (1971) and Ramaker and Schraeder (1974),
normalization and orthogonality can be entirely abandoned for the basis sets, though the
physical side of the theory becomes much less transparent in that case.
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Typically, a finite number of closed-channel basis vectors are selected to be
orthonormalized and diagonalizêHt , so that

Eλ(K) = Eλ +
K2

2µp
and Vλν(K

′,K ′′) = 〈λK ′|V̂p|νK ′′〉. (A9)

This is known as the restricted CI procedure (Fano 1961). However, there may be other choices,
and, in general, the dependence ofEλ(K) onK may be not separable from the dependence
onλ.

Constructing an open-channel basis satisfying condition (A5) is known as
prediagonalization (Fano and Prats 1973). For a final state containing only one free particle,
prediagonalization can be reduced to the solution of a set of integral equations; with several free
particles in the final state, prediagonalization is not trivial and requires additional assumptions,
some of which will be discussed later.

Projecting Schr̈odinger equation (A2) onto either a closed channel〈λK ′| or an open
channel〈bK ′E′|, one obtains

(E − Eλ(K ′))3λ(K
′; aKE)−

∑
ν

∫
dK̃ Vλν(K

′, K̃;E)3ν(K̃; aKE)

−
∑
b

∫
dẼ

∫
dK̃ Vλb(K

′, K̃Ẽ;E)Cb(K̃Ẽ; aKE) = 0 (A10)

(E − E′)Cb(K ′; aKE)−
∑
ν

∫
dK̃ Vbν(K

′E′, K̃;E)3ν(K̃; aKE) = 0. (A11)

Using the techniques of Howatet al (1978), one can obtain from (A11) and the open-channel
asymptote that

Cb(K
′; aKE) = δbaδ(K ′ −K)δ(E′ − E)

+
∑
ν

∫
dK̃ Vbν(K

′E′, K̃;E)3ν(K̃; aKE) 1

E − E′ ± i0
(A12)

which, after substitution into equation (A10), gives∑
ν

∫
dK ′′

{
(E − Eλ(K ′))δλνδ(K ′ −K ′′)−1λν(K

′,K ′′;E)}3ν(K
′′; aKE)

= Vλa(K ′,KE;E) (A13)

with

1λν(K
′,K ′′;E) = Vλν(K ′,K ′′;E)

+
∑
b

∫
dK̃

∫
dẼ

E − Ẽ ± i0
Vλb(K

′, K̃Ẽ;E)Vbν(K̃Ẽ,K ′′;E). (A14)

With 3ν(K
′; aKE) obtained from (A13), one can construct a complete final-state vector as

|aKE) = |aKE〉 +
∑
λ

∫
dK ′ |(λE)K ′〉3λ(K

′; aKE) (A15)

where we have introduced ‘modified’ closed-channel states (Fano 1961) as

|(λE)K ′〉 = |λK ′〉 +
∑
b

∫
dK̃

∫
dẼ

E − Ẽ ± i0
|bK̃Ẽ〉Vbλ(K̃Ẽ,K ′;E). (A16)
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It is these ‘modified’ states that determine the process of multiple excitation of the target by the
projectile. It should be noted that, in general,Vbλ contains contributions from the operatorV̂p,
and hence the second term in (A16) incorporates the polarization mechanism of the excitation
of an autoionizing state via an adjacent continuum.

Coefficients3ν(K
′; aKE) contain resonant denominators responsible for autoionization

resonances in cross sections, as well as the amplitudes of autoionizationVλa(K
′,KE;E)

and the amplitudes of transition between different autoionization states1λν(K
′,K ′′;E)

containing both residual interactionVλν(K ′,K ′′;E) and transitions through the adjacent
continuum described by the integral term in (A14). If a CI basis has been chosen for the closed-
channel subspace,Vλν will represent the interaction with the projectile only; the influence of
relatively slow charged projectiles on autoionization could be studied in this way. An alternative
possibility is to use a completely prediagonalized basis for closed channels, withVλν = 0.
This would mean considering autoionizing states polarized by the projectile.

As the coupled integral equation (A13) is too complex to solve exactly, it is approximate
solutions that are of primary importance for a theoretical model. Calculations presented in the
present paper have been performed using a ‘strong diagonalization’ approach, setting

1λν(K
′,K ′′;E) ≈ 1λλ(K

′,K ′;E)δλνδ(K ′ −K ′′) (A17)

so that

3λ(K
′; aKE) = Vλa(K

′,KE;E)
E − Eλ(K ′)−1λλ(K ′,K ′;E). (A18)

The real and imaginary parts of1λλ(K
′,K ′;E) give the resonance shift and width

1Eλ(K
′E) = Vλλ(K ′,K ′;E) +

∑
b

∫
dK̃

∫
dẼ

E − Ẽ ± i0

∣∣Vλb(K ′, K̃Ẽ;E)∣∣2 . (A19)

0λ(K
′E) = 2π

∑
b

∫
dK̃

∣∣Vλb(K ′, K̃E;E)∣∣2 . (A20)

In general, an autoionization resonance becomes shifted and broadened due to both interaction
with the projectile and virtual transitions into the continuum. It should be noted that, in the
general case, resonance position

Eλ(K
′E) = Eλ(K ′)− (K

′)2

2µp
+1Eλ(K

′E) (A21)

and width0λ(K ′E) are both functions of projectile momentum and final-state energy. It is
under certain additional assumptions only that one could speak of AIS position and width as
atomic constants.

The amplitude of transition from an initial state (target in the ground state, incoming
projectile with momentumK0) to a final state|aKE) can be calculated as

t (aKE|K0) = (aKE|V̂p|K0)

= tdir(aKE|K0) +
∑
λ

∫
dK ′

tres,λ(aKE,K
′|K0)

E − Eλ(K ′)−1Eλ(K ′E) + 1
2i0λ(K ′E)

(A22)

with

tdir(aKE|K0) = 〈aKE|V̂p|K0) (A23)

tres,λ(aKE,K
′|K0) = 〈aKE|Ĥ − E|λK ′〉〈(λE)K ′|V̂p|K0)

= tdec,λ(aKE,K
′)texc,λ(K

′E|K0). (A24)
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Since matrix elements (A6) and (A7) are calculated with the full HamiltonianĤ , amplitudes
(A23) and (A24) include higher-order terms in̂Vp as well. From (A20) and (A24) one can see
that

0λ(K
′E) = 2π

∑
b

∫
dK̃

∣∣tdec,λ(bK̃E,K
′)
∣∣2 . (A25)

We will call texc,λ the amplitude of the excitation of autoionization stateλ; the quantity

σexc,λ = C
∣∣texc,λ(K

′E,K0)
∣∣2 (A26)

with an appropriate factorC, will be called the cross section of AIS excitation; it is directly
related to experimentally observable quantities, as shown in this paper.

For three free particles in the final state, open-channel prediagonalization is quite
non-trivial, and one has to make additional assumptions about the structure of continuum
wavefunctions. For fast enough projectiles, we can neglect polarization of autoionizing states
and adjacent continua by the projectile and describe the projectile’s motion with a plane-wave
state|K〉, expanding prediagonalized states|aKE〉 into a sum of product states|pEt〉|K〉,
with Et = E −K2

/2µp

|aKE〉 =
∑
p

∫
dK |pEt〉|K〉ζ(pK; aKE). (A27)

Using (A27) and the completeness conditions∑
a

∫
dK ζ(pK; aKE)ζ ∗(p′K ′; aKE) = δpp′δ(K −K ′) (A28)∫

dK |K〉〈K| = 1 (A29)

one obtains∑
b

∫
dK̃

∫
dẼ

E − Ẽ ± i0
|bK̃Ẽ〉〈bK̃Ẽ| =

∑
p

∫
dẼt

Et − Ẽt ± i0
|pẼt〉〈pẼt|. (A30)

Formula (A30) allows one to replace summations over the compound states target + projectile
with summations over target states only, where projectile-induced polarization is not important;
such a replacement significantly simplifies calculations. Still, final state vectors in AIS decay
amplitudestdec,λ and direct ionization amplitudestdir cannot be simplified in that way, and one
has to account for essentially three-particle kinematics (Godunovet al 1989).

Splitting amplitudesVλb into two parts,

〈λK ′|Ĥ − E|bK ′′E′′〉 = 〈λK ′|Ĥt + ĥp− E|bK ′′E′′〉 + 〈λK ′|V̂p|bK ′′E′′〉 (A31)

and using substitution (A30), we can rewrite

texc,λ(K
′E|K0) = 〈λK ′|V̂p|K0)

+
∑
b

∫
dK̃

∫
dẼ

E − Ẽ ∓ i0
Vλb(K

′, K̃Ẽ;E)〈bK̃Ẽ|V̂p|K0)

= 〈λK ′|V̂p|K0) +
∑
b

∫
dK̃

∫
dẼ

E − Ẽ ∓ i0
〈λK ′|V̂p|bK̃Ẽ〉〈bK̃Ẽ|V̂p|K0)

+
∑
p

∫
dẼt

Et − Ẽt ± i0
〈λK ′|(Ĥt − Et)|pẼt〉〈pẼt|V̂p|K0)

= td1,λ(K
′|K0) + td2,λ(K

′E|K0) + tc1,λ(K
′E|K0). (A32)
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That is, we account for direct AIS excitation, two-step excitation and correlation excitation
through the adjacent continuum. Interaction with the projectile can thus be included through a
Born-like expansion; however, we have neglected the third-order terms arising from two-step
(second-Born) transitions to the continuum, since our earlier estimates (Godunovet al 1997b)
and other results indicate that their contribution is small enough in the case of interest for
this paper. Also, in thetd2,λ amplitude, we have omitted transitions through the continuum,
retaining only the states of one-electron excitation in the sum over intermediate states.

Equation (A32) can be treated as separating three components in the ‘modified’ vector of
the open channel

|(λE)K ′〉 = |λK ′〉 +
∑
p

∫
dẼt

Et − Ẽt ± i0
|pẼt〉〈pẼt|(Ĥt − Et)|λK ′〉

+
∑
b

∫
dK̃

∫
dẼ

E − Ẽ ∓ i0
|bK̃Ẽ〉〈bK̃Ẽ|V̂p|λK ′〉 (A33)

the second term corresponding to the admixture of the continuum though correlation well
known from photoionization studies, and the last term representing the admixture of the
continuum through the interaction with the charged projectile.

Avoiding the poorly tractable procedure of constructing prediagonalized continuum states
|aKE〉, we could restrict ourselves to the first-order treatment, as described in Ivanov and
Safronova (1992), so that

|aKE〉 = |aKE[0]〉 +
∑
b

∫
dK̃

∫
dẼ

E − Ẽ ∓ i0
|bK̃Ẽ[0]〉〈bK̃Ẽ[0]|V̂ |aKE〉 (A34)

with some primary basis|aKE[0]〉and residual interaction̂V . One choice is to use plane waves
for the scattered projectile and̂Vp instead of̂V , which would result in a second-Born calculation
(Godunovet al 1998). However, this approximation gives a poor asymptotic for continuum
wavefunctions in the region of strong post-collision interaction, where one could use some
closed solution of the three-particle equations of motion preserving collision kinematics—for
instance, Faddeyev–Mercuriev wavefunctions (Godunovet al 1989). In the latter case, using
(A34) we would encounter the hard problem of correctly determining the residual interaction,
and most work in this direction, including this paper, did not involve first-order final-state
corrections.
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