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Abstract. Mechanisms of two-electron excitation of th@s)!S, (2p%)!D and (2s2pP
autoionizing states of helium are studied both experimentally and theoretically. It is shown that
an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive
parametrization of experimental cross sections of ionization, allowing one to extract cross sections
of excitation of autoionizing states. Using a new fitting procedure together with the proposed
parametrization made it possible to obtain the excitation cross sections and magnetic sublevel
population from electron spectra as well as, for the first time, to resolve the contribution of
resonance and interference components to resonance profiles. Interference with direct ionization
is shown to contribute significantly into resonance formation even for backward ejection angles.
We demonstrate theoretically that the excitation cross sections thus extracted from experimental
electron spectra hold information about the interaction of autoionizing states with an adjacent
continuum.

1. Introduction

The physical nature of autoionizing states lying above the ionization threshold is still not clear
enough. Traditionally, in atomic physics, only states with real energies have been considered
as true physical states, while any energy broadening has been attributed to interaction with
external particles or fields. From this point of view, autoionizing states (AlS) cannot be treated
as physical states, since they cannot belong to either the discrete or the continuous spectrum,
because their decay does not require any additional external interactions, but predominantly
occurs due to internal interactions within the atomic system. The classical theory of resonances
(Breit and Wigner 1936), widely used in atomic and nuclear collisions, introduced the idea
of a complex-energy state. This theory associates the position of the resonance with the real
part of the resonant state energy, and relates the intensity of the resonance to the cross section
of the resonant state excitation. However, this model can rarely be applied to autoionizing
resonances in photoionization, electron—atom and ion—atom collisions. Since excitation and
non-radiative decay of autoionizing states is coherent with direct ionization, the amplitudes
of resonant and direct ionization should be summed rather than the probabilities for the two
processes, which often changes the resonance shape and intensity. Formally, an autoionizing
state can be characterized by a linear combination of both discrete- and continuous-spectrum
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components, which is not an eigenfunction of a Hermitian operator (see the appendix), or,
alternatively, an eigenfunction of a non-Hermitian operator related to the physical Hamiltonian
of the system by a complex transformation (Mandl 1966, Reed and Simon 1978, Junker 1985);
such ‘wavefunctions’ do not produce any observables, in the standard interpretation. However,
having nearly the same position and width in different collision processes, AIS appear to be
more a feature of atomic structure than a property of atomic reactions, and one might wonder
whether considering such states may have physical meaning.

There are two approaches in atomic theory that address this question diffefaipte-
coupling calculations do not consider AIS as true physical states, merely modelling the
resonance behaviour of the full (continuous-spectrum) wavefunction by introducing various
pseudostates (Burke 1965). In contrastconfiguration-interactiorcalculations, AIS are
generally treated as truly physical discrete-spectrum states ‘embedded’ in the continuum.
Since excitation and non-radiative decay of such states is coherent with direct ionization, the
amplitudes rather than probabilities of resonant and direct ionization must be summed. This
leads to their interference, generally resulting in an asymmetric resonance shape, exhibiting
both the maximum and minimum being shifted from the resonance position (Fano 1961). The
width of the resonance is no longer related to the width of a single peak, and the intensity of the
resonance is no longer proportional to the population number of the resonant state (Aberg and
Howat 1982). Instead, one has to deal with additional resonance shape parameters, such as
the profile index; in Fano’s theory, or the asymmetdyand yieldB parameters in the Shore
formula (Shore 1968), which essentially depend on the type of collision and hence cannot
describe atomic structure consistently. The total resonant yield can only provide a lower
estimate for the excitation cross section at asymptotic collision velocities (Godatnalv
1997a), so that AIS excitation cannot be uncoupled from direct ionization, and the existence
of AIS as true atomic states might seem doubtful.

This paper presents evidence that the cross sections of AlS excitation can be extracted
from experimental data under certain conditions, and hence itis still possible to consider AIS as
physically meaningful atomic states, since their physical characteristics are measurable despite
their complex nature. Once measured in a specific reaction, the values obtained can be applied
to other collision processes with the same projectile, to uncouple AIS excitation from decay.
In this way, one can study the interference of direct and resonant ionization in more detail.

We employ high-resolution electron spectroscopy of autoionizing and Auger resonances
excited in fast ion—atom collisions, which has proved to be a powerful method of atomic
structure research (Stolterfoht 1987). However, a high-quality experimental set-up, good
counting rate and high energy and angular resolution have to be combined with an appropriate
theoretical model of resonance phenomena, to allow the extraction of physically meaningful
data from experimental spectra.

In collisions with charged projectiles, the Coulomb interaction in the final state (CIFS)
between the scattered particle, ejected electron and residual ion can strongly influence both
direct ionization (Crooks and Rudd 1970) and resonance profiles in electron emission spectra
(Schowengerd and Rudd 1972, Bordenave-Montesqeieal 1975, Arcuni and Schneider
1987, Moretto-Capelleet al 1996, Godunowet al 1997c). To reproduce experimentally
measured spectra, the description of the three-body Coulomb interaction of charged particles
in the ionization continuum must be as accurate as the description of two-electron excitation
(Godunovet al 1997¢). This is a challenging problem to both theory and experiment because
of additional spectral features significantly complicating the analysis. In the conditions of
strong CIFS, resonance profiles may be very different from the familiar Fano shape (Arcuni and
Schneider 1987, Moretto-Capedleal 1996), and the traditional Fano or Shore parametrization
cannot be applied. The attempts to remove the discrepancies between theory and experiment
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by just shifting and broadening the resonance become meaningless if the resonance is split due
to the three-body interaction in the final state. Hence, the idea of a PCI shift (Barker and Berry
1966, Kuchiev and Scheinerman 1988) is only applicable for weak Coulomb interactions in
the final state.

Progress in this area has recently been achieved in a joint theoretical and experimental
study of the excitation of the autoionizigs’)'S, (2p?)D and(2s2p*P states of helium by
100 keV proton impact (Godunat al 1997c¢; hereafter referred to as I). New high-resolution
(up to 68 meV) measurements of electron emission spectra made it possible to resolve the
near-lying(2p?)'D and(2s2p*P resonances and reveal an evident distortion of the resonance
profiles by CIFS for forward electron ejection angles beloW 4r larger emission angles the
resonance lineshape is close to a Fano profile. A new parametrization of resonance profiles,
developed on the basis of a three-body model, provided adequate processing of experimental
data. When the influence of CIFS is weak, the usual Shore parameters are reproduced as a
limiting case for the generalized formula. However, CIFS was found to influence the resonance
parameters even in the backward direction. This means that, for an adequate interpretation of
experimental data, CIFS should be taken into account for all angles in this region of collision
velocities. Considering the complexity of the problem the results of the calculations including
CIFS in both the resonant and direct ionization channels and allowing for the second-order
terms in the two-electron excitation amplitude agree well with the measurements for all three
autoionizing states.

Despite considerable progress in paper | in understanding the role of CIFS in the formation
of the autoionizing resonances of helium in electron emission spectra, advancement towards
gaining a deeper insight into mechanisms of double excitation and the interplay between
resonance and direct transitions demanded additional studies. The new parametrization
including CIFS employed five parameters (resonance position, resonance width and three
shape parameters), thus extending the usual four-parameter Shore and Fano parametrizations.
However, in paper | the fit processing of electron spectra which was used did not allow one to
extract meaningful values for all five parameters, especially for the parameter that has a link
to the cross section of the excitation of the autoionizing states. It was also not clear to what
extent such cross sections contain information about the interaction of autoionizing states with
the adjacent continuum. Itis the purpose of this paper to address these questions. Preliminary
results were published in our recent paper (Moretto-Cajetikd 1997).

Here we present a comprehensive experimental and theoretical analysis of the excitation of
autoionizing states of helium by 100 keV proton impact, which is used to illuminate a number of
important theoretical issues. The new parametrization of resonance profiles distorted by CIFS,
asintroducedin |, is shownto be a special case of ageneral approach, andits relationto the Shore
parametrization and other parametric expressions is discussed, extending the discussion already
giveninl. The paperis organized as follows. Section 2 introduces a general procedure allowing
one to separate the excitation of autoionizing states from their interference with the continuum.
Section 3 demonstrates how these general formulae apply to proton impact ionization of helium.
Section 4 gives a brief discussion of the applicability of alternative parametrizations in theory
and experiment. In section 5, we describe a new fitting procedure for the processing of the
high-resolution spectra measured in I. In section 6 our computational model is briefly recalled.
Finally, section 7 contains the results of detailed calculations, experimental measurements and
their interpretation and resonance parameters, AlS excitation cross sections and relative phase
between resonant and direct ionization transitions are discussed. The appendix presents the
technical details of constructing wavefunctions and amplitudesin the diagonalization approach,
thus defining the cross section of excitation of autoionizing states that can be extracted from
experiments.
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2. General parametrizations

2.1. Cross section in the resonance region

In this section, we consider the general case of single ionization of an atomic target by some
external perturbation (collision with a charged particle, photoionization or any other projectile),
with a perturbation strong enough to allow the formation of autoionization states. That is, the
transition from the initial state to a final state may either be direct or involve multiple excitation

of the target with subsequent decay of the excited states into the same continuum. We will
describe the final state of the system (atomic core + ejected electron + scattered projectile)
with the total energye and a collection of other quantum numbergdiscrete or continuous),
necessary to uniquely identify the state. As discussed in Godenal(1997a), ionization

cross sections for many physically interesting situations can be expressed through a transition
amplitude as

o(a, E) =Clt(a, E)|? 1)
where the transition amplitudéa, E) contains singularities

tresy(a, E)

t(a, E) = tgr(a, E) + ; EE@ B i@ B2
with the amplituderyi (a, E) describing direct ionization and each term in the sum qver
introducing an autoionization resonance. The form (2) of the transition amplitude implies that
the decay of the autoionizing states is close to exponential, so that all the non-exponential
dependence can be introduced through the energy dependengg, @f, E), E, (a, E) and
I'.(a, E). A detailed derivation of the continuum wavefunction and the expression for the
transition amplitude can be found in the appendix.

Combining equations (2) and (1), one may easily obtain

_ A,(a, E)e,(a, E)+ B,(a, E)
o(a, E) = ogi(a, E) +Zuj @B

)

®3)

with e, (a, E) = (E — E,.(a, E))/3T,.(a, E), where
agir(a, E) = C |tgir(a, E)|? (4)

Ay(a, E) and B, (a, E) being the linear combinations of the produgtg, (a, E)tresy(a, E)
ands}, (a, E)tes,(a, E) with the coefficients expressible through, (a, E) = (E,(a, E) —
E,(a, E))/%F,w(a, E)andl',,(a, E) =T ,(a, E) +I',(a, E) (lvanov 1989, I). Equation (3)
was originally derived by Shore (1968) for the most general case of an atom interacting with
radiation; however, equation (3) is valid for the cross sections of any other ionization process,
involving an arbitrary number of interfering autoionization states decaying into any number
of ionization channels, coupled by any kind of atomic interaction.

In the physically important case of isolated resonances, the parameters in (3) can be
expressed as (Godunetal 1997a)

Aua, E) = Re(t}i (a, E)tresp(a, E)) (5)

C
Iy(a, E)

Bﬂ(a, E) = {|m(l§ir(a, E)treSM(a, E)) + ) |fre5u(a, E)lz} (6)

1
I'y(a, E) I'ua, E
Though the following discussion does not depend on the isolatedness of the resonances and
the same results could be obtained in the general case as well (see 1), the approximation
(equations (5) and (6)) seems to provide a good illustration of the principal ideas without too
much technical complexity.
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2.2. Energy dependence of the resonance parameters

The pole singularity is analytically separated in formula (3), so the rest of the energy dependence
is encapsulated in the coefficient functiohg(a, E), B, (a, E), E,(a, E), T, (a, E). Various
cases of energy dependence are encountered.

Thesimplest assumptiomould be that4,, andB,, as well asE,, andI’,, are constantin the
resonance region. Most theoretical and experimental works on atomic ionization rely on this
approximation, which has proved quite satisfactory in low-energy photoabsorption problems.
However, already for the photoionization of atoms via autoionizing states converging to higher
ionization thresholds, when the problem becomes essentially multichannel, the deviation from
parametrization (3) with constadt, andB,, becomes significant, which led some physicists
to model the variation of the fitting coefficients with energy in a wider range by their linear
or quadratic expansions in powersggf(lvanov and Senashenko 1983, Ivanov 1989). On the
other hand, in the collisions of charged particles with atomic targets, Coulomb interactions
in the final state have been known for a long time to significantly influence the profiles of
autoionization resonances (Schowengerdt and Rudd 1972, Bordenave-MontesgLi&u5,
Heideman and van de Water 1981, Arcuni and Schneider 1987), resulting even in a deviation
of resonance profiles from the Fano shape (Arcuni and Schneider 1987, Moretto-@apklle
1996). The effect is more pronounced in differential cross sections. A semiempirical attempt
to account for post-collision interaction through introducing a resonance shift (Barker and
Berry 1966, Kuchiev and Scheinerman 1988) could only have a limited applicability (weak
CIFS), giving little new information about the physical mechanisms involved.

To reveal more details in the general picture of resonant ionization, one has to consider
amore specific energy dependeméehe coefficient functiongi, (a, E) andB,,(a, E) in (3).

An intuitively appealing approach has been suggested in I, where the influence of CIFS on the
resonance ionization channel has been factored out as a complex factor
tres (@, E) = By(a, E) € Pl (a) @)

respu
so that
Bula, E) € @Bl (a)

t(a, E) = tgir(a, E) + Z E—Eu(a)+iT,(a)/2 "

m

8

Equation (8) agrees with the general principle of quantum scattering theory that virtual
interactions in the system must be asymptotically represented by a process-specific phase;
for instance, such a phase shift may be a consequence of the scattered projectile’s influence
on the decay of the autoionizing state (post-collision interaction). The exact form of functions
Bu(a, E) anda, (a, E) depends both on the level of the description of the particles involved
(target, projectile, ejected electron) and on the adopted level of distinction between pre- and
post-collision interactions.

If the dominant part of the energy dependence in (8) is contained in the resonance
amplitude, then substituting (7) into (5) and (6), one can obtain

Ap_(a’ E) = ,3;1 (a, E) [Aint,p_(a) COSO[M(CI, E) — Bint.u(a) Sinau(av E)] (9)
Bu(aa E) = ,B,u(aa E)[Ain’[,u(a) Sinaﬂ(a, E) + Bint,u(a) COSO[M(CI, E) + Bexcu(a)ﬁu(av E)]
(10)
with
4C
Aintu(a@) = —— Re(t§, (@), (@) (11)

Ly(a)
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C
Biiu(@) = IM (15 (@)1, (@) (12)
"
ac
BeXQp.(a) = FZ—(a) troesﬂ(a)|2. (13)
I

As demonstrated in Godun@t al (1997a) and Moretto-Cappede al (1997), the parameter
Bexeu(a) can be reduced to the producf,oexc,, Whereoeyc,, iS the cross section of the
excitation of the autoionizing state. One can expect that the peculiar kind of energy
dependence of the coefficient functioAg (a, E) and B, (a, E) specified by equations (9)

and (10) may give the clue to experimentally determining the excitation cross section. Indeed,
accounting for (9), (10), equation (3) can be rewritten as

o0, E) = ogrla, B + 3 PO
W
x[Aint, (@) f1(agy) + Bint (@) f2(agy) + Bexep (@) fa(ag,,)] (14)
where
filag,) = ¢, cosu,(ag,) + sinw, (ag,) (15)
fa(ag,) = cosw, (ag,) — &, Sina, (ag,) (16)
f3(a8u) = ﬂu(agu)~ (17)

Equation (14) can also be obtained directly from equations (1) and (8), by employing the limit
of isolated resonances.

2.3. Excitation cross section

If functions f1, f> and f3 contain the dominant part of the energy dependence in (14) one
could use equation (14) as a parametric formula in interpreting ionization spectra. Knowing
the values ofBeyc, andI’,, thus obtained, one can derive the valuegg .

A number of general conditions must be satisfied to make such an indirect measurement
possible. Thus, for weakly coupled systerfis,~ 1 ande,, =~ 0, so that (14) reduces to the
usual Shore parametrization wiB), = Bint,,, + Bexcy, and the excitation of autoionization
states cannot be separated from their interaction with the continuum and decay. This limit has
been studied extensively in I. It should be stressed that equation (14) must be considered as
a special case of Shore’s formula (3) with energy-dependent coefficients; in contrast, Shore
parametrization with constant coefficients appears to be a special case of the more general
parametrization (14). The assumption of constant parameters is just another constraint on the
energy dependence of the cross section, and it is well known that a constraint on a general
formula is stronger than the same constraint applied to a part of it.

We note that post-collision interaction must be strong enough to allow the splitting of
the coefficientB,, into interference and excitation parts. This implies a strong distortion of
the classical resonance shape as described by Shore (or equivalent Fano) parametrization with
constant coefficients. For a rapid variationogf with energy near resonance, this distortion
cannot be reduced to a mere resonance shift, the oscillatory behavioutegf &l cosy,,
resulting in additional extrema producing the effect of resonance splitting. With the phase
separation in (7) reflecting the kinematics of the problem, this effective splitting may have, in
the case of a charged projectile impact, much in common with the dynamic Stark effect. A
detailed investigation of this relation goes beyond the scope of this paper. However, we can note
that the perturbation from the projectile must be essentially non-stationary to allow separation
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of Bint,, and Bex,—Otherwise, it would result in a mere energy shift and broadening with
nearly constant phase, which returns us to the Shore formula.

To be suited for reliably extracting AIS excitation cross sections from experimental spectra,
functions f; and f> must both be nearly orthogonal in energytpin the resonance region.
For instance, fot, linear in energy and slow-varying,, terms with f; and f, in (14) give
the sine and cosine first-order components of a Fourier series, with the zero-ordefsterm
being automatically orthogonal to them. In general, any two of these functions may overlap;
the respective parameters would sum up in that case, with information loss. Simultaneously
fitting experimental spectra for a few values of the parameté¢hst exhibit different energy
behaviour off1, f> and f3 would significantly improve the accuracy of the fitted parameters.
Therefore, differential cross sections provide a better source of data for indirect measurement
of AIS excitation cross sections, while integral cross sections leave too few parameters to
control.

3. lonization by charged particle impact

As an illustration of the general assertions of the previous subsection, we consider the problem
of ionization of an atomic target in collisions with a charged patrticle. A solution of a three-
particle problem for the interaction of the scattered projectile, ejected electron and recoil ion
in the final state gives the transition amplitude as (Godwial 1989, 1)

0
td te)(c
(a. E) = Kair(a, EYigy + ) Kresy(a, E) 2 50 (18)

. — E, +il,/2

Wheretg’ir is the direct ionization amplitude in the Born approximatixggcu is the amplitude

for non-radiative decay of an autoionizing state in an isolated atgg), is the excitation
amplitude for the autoionizing state andE,, T',, are the resonance position and resonance
width, respectivelyKgir(a, E) andKes, (a, E) are the factors allowing for CIFS in the direct

and resonance ionization amplitudes; their explicit form can be found elsewhere (Godunov
et al 1989, I). Equation (18) is a special case of equation (2), with

tair(a, E) = Kair(a, E)§, (19)
tresy(a, E) = KTESM(av E)tgecﬂtexcw (20)

In the kinematic region considered, one can use the eikonal limit of the above expressions,
obtaining (for details see 1) for the functions in equation (7),

Bu(a, E) = exp(—§ arctare,) (22)
au(ey) = —EIn(e5 +1)/2 (22)
with
=2 (z-2) (23
Vs Upe

whereZ, and Z; are the charges for the projectile and the recoil ion accordinglis the
velocity of the scattered particle,e is the relative velocity in final state between the scattered
particle and the ejected electron. And the double differential cross section of ionization can
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be written as (Godunoet al 1992, 1)
dc
dEe dQe

exp(—£ arctarg,,)
sﬁ +1

= F(Ei, Ee,0e) + )
"

X{Aint,u(Ei, ee)[su COQO{M (SM)) + Sin(au(su))]
+Bint$u (Ei, Qe)[COS(O(M(&‘M)) —&u Sin(“u(g;t))]

+Bexcu (Ei, 0) €Xp(—£ arctare,,)}. (24)
The parameters in equation (24) are determined as
Kik N
Aint,u(Ei, Oe) = (277)4m§?ez Re{ KF%SM / ds2s (tdirtdecufexcu)} (25)
I
4 2 Kike 0 *
Bint,M(Ei, Qe) = (277) mpTz Im Kres;; de (tdirtdecutexcu) (26)
I

Kik 2
S Kie |Kr%su’ fde |tdet;utexcu|2 27)

whereK; andK;s are the momenta of the incoming and outgoing projectilés the momenta

of the ejected electromy,, is the mass of the projectile and2d is the solid angle element

in the direction of the scattered projectile’s velocity. Obviously, equations (25)—(27) are a
special case of equations (11)—(13), the integrals representing a partial summation over the
configuration indicea.

Separating out the angular dependence of the amplitkgle one can link the parameter
Bexc i (Ei, e) t0 the cross section of the excitation of the autoionizing staténdeed, the
amplitude of the non-radiative decay., of an autoionizing state with the total orbital
momentuml can be written as (l)

Bexeu(Ei, 0e) = (210)*m

2. .
Idecu = F_lL exXp(id.) Tdecu Y11 (S2e) (28)

"
wheres; is the phase of the continuum wavefunction and the amplitugdg: determines the
resonance width in an isolated atomic system

2
r,=2r ]tdew| . (29)
Substituting these expressions into equation (27) and accounting for

n§

0 _
|KFES/J«| - sinh(né) (30)

one obtains

- L
%(nr,t)BemEi,ee)%gs) = oM P2, (coshe) (31)
M=—L

whereP; ,;(CoSbe) is the associated Legendre function anj;t’ﬂ denotes the cross section of
the target excitation to the state with total orbital momenfuend magnetic sublevé¥. The
total AIS excitation cross section is given by

L K L 2
Gl E) = Y ol () = @otmE il Y f i 2 doy. (32)
M=—L

' M=-L



Excitation of autoionizing states of helium 979

Thatis, knowing the angular dependence of the resonance paraBggietEi, 0.) from fitting
experimental spectra to the formulae (14) or (24), one can derive the cross segtioAy
ando ¥ (E;) for the excitation of the autoionizing state.

We stress once again that separating out the excitation part 8f theefficient does not
mean that there is no interference between the direct and resonant ionization; on the contrary,
one has to add interactions between the ejected electron, residual ion and scattered projectile
to achieve that separability. As shown in the appendix, this means more correlation in the

continuum, with all the discrete—continuum interference preserved.

4. Other parametric formulae

While Shore parametrization (3) contains two profile parameters for each resonance,
parametrization (14) introduces three parameters for each resonance. However, additional
parameters cannot guarantee the possibility of extracting new physical information by
themselves. One also has to relate theoretically the parameters to some quantities possessing a
clear physical sense. Thus, the semiempirical approximation of the energy dependence of the
coefficient functionsi,, (a, E) andB,, (a, E) in (3) by polynomials irg,, may be quite efficient

for the quantitative description of experimental spectra, but it gives little for understanding the
physics of autoionization, and itis bound to fail to describe some important features arising from
the non-analytic behaviour of the transition amplitude (e.g. cusps). Still, phenomenological
formulae like that may be useful for applications requiring large banks of atomic data (Godunov
and lvanov 1999).

A different kind of many-parameter formulae is known in the theory of partial cross
sections of resonant ionization. Thus, Fano’s (Fano 1961) profile iggléar an isolated
resonance in a partial cross section is related to the profile index for the corresponding total
cross sectiog by the expression (lvanov 1989)

gp = 1g8 — 2= q)/8] /1 [g8 + 2 — q) /8] + (1 - )2 (33)

with an additional dimensionless parameiethat can either be calculated theoretically or
extracted from experimental data for total and partial cross sections; however,jsisice
expressed through both the total and partial widths as well as the on-shell parts of the total and
partial amplitudes of indirect AIS excitation through the continuum (Godweiat 1997a),
extracting more information about the separate amplitudes or phases can only be possible
in a few very special cases (lvanov 1989). One could also recall the well known Starace
parametrization for a single-channel cross section in multichannel photoionization (Starace
1977)

A/L(a’ E) = ogir(a, E)2 [qu Reyxt(a) —Im V/L(a)] (34)

B.(a. E) = ogir(a, E){~2[q, IMmy,(a) + Rey, (@] + (42 + D) |y (@]} (35)

closely resembling equations (9) and (10). However, this parametrization encounters the same
interpretational problems as formula (33). Since equation (3) holds for any kind of cross
section (partial and total, differential and integral), no ‘full experiment’ (Starace 1977, Krause
et al1983) can separate AlS interference with the continuum from AIS excitation, unless there
is a strong energy dependence of the relative phase introduced by equation (7). In other words,
the processes of excitation and decay of autoionizing states must be essentially influenced by
an inhomogeneous external potential with an inhomogeneity length comparable to the size of
the excited target, in which case the gross factoring out of direct ionization as in equations (34)
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and (35) is impossible. For the proton-impact ionization of helium considered in this paper,
the above-mentioned potential is associated with the projectile’s current.

Every parametrization may have a number of alternative formulations, which do not
introduce a different level of consideration, but rather provide a variety of presentations
stressing different aspects of the same theory. Thus, the Shore formula (3) is often rewritten
in the Fano—Cooper form (Fano and Cooper 1963)

o = Odir {(1 Z’%) + Z : (SZ;:]’]‘-) } (36)

where functionsy, = g, (a, E) andpﬂ = pﬂ(a, E) are related to the Shore coefficients by
the equations

A, = Zplzlquadir (37)

B, = p%(q* — Do (38)

The form (36) is equivalentto (3), being as general. Itmay be preferable since the pargmeters
andpﬁ are dimensionless, which makes the comparison of different targets simpler. However,
it lacks the linearity of equation (3), and the relation between the parameters of various kinds
of cross sections becomes less straightforward.

A number of alternative forms can be derived for formula (14) as well. Introducing
dimensionless parameteky ands$,, with equations

Aint.ﬂ - ﬁHBexunM COS5M (39)
Bint,;t = ﬂ,U.BeXQ;LR[L Sinau (40)
or, inversely,
2 2
RM _ Alnt N7 Blr'lt S (41)
ﬂlLBeXC,/j.
Bin
8, = arctan——" + 7 n=0,1,..) (42)
int,

one can rewrite equation (14) as

2
B,
o=o0dgr+ Y. ﬂ“z—ixci“ {1+ R,[e, cosw, +sinw,]} (43)
w 123

wherew,, = §, +«,. Thus, for the double-differential cross section of ion-impact ionization
of helium considered in the previous section, we obtain

dc exp(—2¢ arctare,,) Beyc 1 (Ei, 6e)
—— = F(Ei, Ee, 0e) + 2 i
dEeda, — | Fer e Z e2+1
x {1+ R, (Ej, 0e) [, COSw,, (Ei, 6e) + Sinw,, (Ej, 6e) |} (44)

withw, = 4§, —& In(efb +1)/2. Inaslightly different form, this expression has been introduced
in Godunovet al (1992).

The resonance terms in equation (43) are proportion#c4g, which is related to the
AIS excitation cross section; that is, the classical Breit—-Wigner form of the resonance becomes
factored out, and the whole effect of the autoionizing state’s interference with the continuum,
including CIFS, is contained in the dimensionless quant&igginde,,. This, as in the case
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of Fano and Shore parametrizations, may make these parameters more suited for comparing
the results for different targets excited by different projectiles. Such dimensionless quantities
may also be of importance for investigating the common features of reactions with massive
projectiles and photoionization. Since the ratios of measurable quantities do not contain any
constant calibration factors, the systematic error introduced through the calibration procedure
is eliminated, which makes dimensionless quantities popular among experimentalists too.

5. Fitting procedure

The profiles of the(28°)'S, (2s2p*P and (2p?)'D resonances, measured in |, have been
analysed using formula (24). In | this formula was proved to be adequate to reproduce the
observed profiles. In that paper each electron spectrum was fitted separately. The structure
of relation (24) makes it apparent that for each resonance we have to adjust three parameters
Aintu(Ei, 6e), Bint,u(Ei, 0e) and Bexc, (Ei, 6e) for each resonance, each of them having its
own (unknown) angular dependence. In this way only one electron spectrum can be fitted
at once and it appears that no reliable solution can be found for these three parameters; it
was observed that onlint ., (Ei, fe) and the sumBint ., (Ei, 0¢) + Bexcu (Ei, 6e)] are reliable
(as used in I). The difficulties which were encountered can be illustrated in the following
way. The possibility to extract all three resonance parametgrs, (Ei, 6e), Bint, . (Ei, 0e)
and Bexc . (Ei, 0¢) from a fit of experimental electron spectra releegriori on the fact that
the functionsfi(Ei, 6e, €,), f2(Ei, e, £,) and f3(Ei, 0e, €,,) in equation (14) have their own
specific dependence against the electron energy. In figure 1 we plot the three whole functions
[(f3(Ej, B, eﬂ)/(eﬁ + 1)) f], with f = f1, f> or f3 for three angles in regions of strong and
small CIFS (10, 90° and 160, respectively). These profiles, not convolved by the apparatus
function, are given for the S resonance; they are almost the same for the other two resonances,
apart from the width, which is smaller in the latter case because of the values of the natural
widthsI",. The multiplying factor ofAix . (Ei, 6¢) always has a typical energy dependence
which helps us in extracting this parameter at all angles, even with the usual fit as used in
I. On the other hand, the multiplying factors By, (Ei, 6e) and Beyc, (Ei, 6¢) can only be
distinguished at forward angles; this means that using the usual fitting procedure only the sum
B, = Bint,, + Bex, Can be extracted in the backward direction. Then, if we want to extract
all three parameters from the experimental electron spectra, some other procedure should be
found to isolate eacBint,, and Beyc,, contribution.

Therefore, another fitting method was developed in this paper to extract the values of all
three resonance parameters (see also Moretto-CapallE997). Indirectly, we take advantage
of the decoupling oBint, . (Ei, fe) from Bexc . (Ei, 0¢) in equation (24), compared to the Shore
form of the B parameter (6), by using the definitionBd,. . (Ei, f¢) as given by (31). Relation
(31) says that the angular dependenc&gt . (Ei, 6e) is known and given by the Legendre
polynomial provided that the excitation cross sectiogg (Ei) of the magnetic sublevels
are determined. Therefore, instead of extracting the resonance paraggieiEi, 0.) we
consider therL (E;) cross sections as new adjustable parameters. At first sight this seems a
strange idea since instead of three independent parameters for each resonance, which cannot
already be extracted from a single spectrum in a reliable way as just mentioned, we now
increase their number through the excitation cross sections of individual magnetic sublevels.
The key point is that the sublevel excitation cross sections are independent of the angle and
must be the same in the description of any electron spectrum measured at any angle. Therefore,
the new fitting procedure which has been used consists in fitting together the maximum number
of electron spectra, covering the whole angle range, to put strong constraints on the adjustable
parameters:Ain , (Ei, 6e) and Biny, . (Ej, 6e) are independent adjustable parameters at each
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Figure 1. Examples of the electron energy dependence of the factfy&H;, be, sﬂ)/(aﬁ +1) f1,
with £ = f1(Ei, fe, £,), f2(Ei. Be, £,) and f3(Ei, e, &,,) for (289)1S resonance of helium excited
by 100 keV proton impact. Electron emission angles afe 90° and 160. Full curve, factor for
the Bexc parameter; broken curve, factor for thg; parameter and dotted curve, factor for thg
parameter from equation (24).



Excitation of autoionizing states of helium 983

angle, whereas the: ¥ (E;) cross sections must fit the whole set of electron spectra. Therefore,
the values o&LY (E;) extracted from forward emission angles help to separate the resonance
and interference components in the backward direction (region of small CIFS). The power of
the method is thus enhanced. Up to a maximum of 15 spectra weretiggether Various
combinations of spectra have been tried, each of them defining a fitting set which always covers
the whole angular range. The resonance pos#igand widthl",, were taken from theoretical
calculations (see I). The direct ionization cross secfigii, Ee, ) Was approximated by a
first-order polynomial. The resonance paraméigt has then be deduced from the adjusted
oM values using formula (31).

This new fitting method already strongly restricts the variation of the adjustable parameters
which can be used. Two additional constraints have been added in the fitting procedure: (a)
the excitation cross sectiaif¥ (E;) must be positive; (0)/Aint, . (Ei, 0e)2 + Bint, . (Ei, 0e)? <
2\/BeXQM(Ei, 0.)F(E;, Ee, 0e) Where the direct ionization cross sectigi(E;, Ee, 6e) IS
determined at the resonance positiBg = E,. The latter condition was simply derived
from the definitions of the resonance parameters. The new fitting procedure has been proved
to be reliable; it gives stable values of the resonance parameters when different sets of spectra
are used; averaged values of the parameters obtained with various combinations of spectra will
be considered in the following.

6. Computational model

Our computation model in this work is nearly the same as in | except that most calculations have
been carried out with a multi-configuration Hartree—Fock function. However, new collision
characteristics have been calculated: cross sections for the double-electron excitation of
autoionizing states, resonance parameBafs, (Ei, 6c) and Bexc . (Ei, 0e) separately, relative
phase’, (Ei, 6¢) between the direct and the resonance ionization.

7. Results

In paper |, we tested the adequacy of the parametrization (24) to describe the observed
lineshapes in the kinematic conditions under investigation. It succeeded in reproducing all
the measured lineshapes. We focused on the influence of CIFS on the following two resonance
parametersiin; , (Ei, 6e) and B, (Ej, 6c) = Bint, ;. (Ei, 0e) + Bexe (Ei, 0e). The importance of
second-order terms in the calculated excitation amplitudes was also stressed. In this paper, we
apply the new fitting procedure described above to the high-resolution electron spectra in the
vicinity of the low-lying autoionizing2s?)'S, (2s2p*P and(2p?)!D states of helium excited

by 100 keV proton impact for emission angles betweehdril 160, comparing the results

with our theoretical calculations for the three resonance paramétgerBin: and Bexc as well

as the two-electron excitation cross sectiofig’.

7.1. Resonance profiles

The extraction of the two groups of resonance parameters from electron spectrain the conditions
of strong CIFS Aj: and Bint, 0n one hand, anfq,., on the other hand, allows us to investigate

the relative contributions of the interference and excitation terms, respectively, to the internal
structure of the observed resonance profiles. Since excitation cross sections do not depend on
the electron emission angle, we can use the valugggfextracted from forward-emission

data to also separate the resonance and interference components in the region of small CIFS
(e.g. for backward emission), where normally one could only obBgir= Bint , + Bexc,, 8S
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Figure 2. Experimental electron spectra in the region of t86)'S, (2p?)D and (2s2p!P
resonances of helium excited by 100 keV proton impact, at the electron ejection angles of 15
50° and 130. Energy resolution 68 meV. Experiment: full circles. Fitting results: full curve,
spectra fitted with the full formula (24); broken curve, the contribution of interference with direct
ionization; chain curve, resonance contribution.
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indicated in section 2. In figure 2, we present experimental electron spectra in the region of
the (289)'S, (2p?)*D and (2s2p*P resonances of helium excited by 100 keV proton impact
fitted with the parametrization (24). As can be seen, interference of the direct and resonance
transitions is almost completely responsible for the formation of the autoionization resonance
profiles at small emission angles. Asthe emission angle increases, the interference contribution
becomes smaller. Still, it remains comparable with the resonance contribution even for
backward emission. A remarkable effect of the ‘reversal’ of the interference contribution in the
transition from small to large emission angles should be attributed to the angular dependence
of the amplitudes of direct ionization being combined with the angle-independent amplitudes
of two-electron excitation.

Itis clearly observable that the asymmetry of the resonance and interference contributions
is small atlarge electron emission angles, where resonance profiles form as aresult of enhancing
(for the (28!S resonance) or compensating (for t®p?)'D and (2s2p'P resonances)
summation. That is why the intensity of the relatively ‘we&R%)'S resonance can become
nearly the same as the intensity of the ‘stro(@82p P resonance for emission angles above
130.

At large emission angles (figure@] the present experimental data clearly illustrate for
the first time that the interference of direct and resonance channels can play an important role
even when the resulting resonance shapes are nearly symmetrical. This indicates that in many
collisional situations, when it is known that direct ionization coexists with the resonant one,
calculations cannot neglezpriori the coupling of these two channels even when experimental
electron spectra do notreveal any clear manifestation of interference patterns. Severalexamples
can be found in earlier works which concerned the double excitation of helium at high-velocity
proton impact (see references in I) as well as the transfer excitation in the He system
(Itoh et al 1985, Gayeet al 1995); in the latter case the possibility of interference between
transfer ionization and transfer excitation amplitudes has been recently incorporated into the
calculations of Bachaat al (1997).

It is worth emphasizing that despite the fact that the three spectra shown in figure 2 are
characterized by very different relative intensities and lineshapes, the fit which is shown was
achieved by keeping the excitation cross sectigff constant, independent of the emission
angle as it must béAs just explained, the strong observed differences in the amplitudes of the
observed resonances come from the interference terms which are strongly angle dependent.

7.2. Resonance parameters

The angular dependences of resonance paramétgrsin: andBeyc for the (289)1S, (2s2p*P
and(2p?)'D states are presented in figures 3-5, respectively.

There is no need to comment once again herelgnsince this parameter was already
discussed in | and the experimental values obtained with the new fitting method are very
near the values reported in I. On the other hand, the new fitting procedure also allows us to
extract the absolute value and the angular behavioBp#vhich can be compared with those
of Ajnt. Extracting both parameters from electron spectra has also allowed us to derive the
relative phasé,, (Ei, 0¢) (see the definition given in equation (42); the discussion of this new
quantity will be discussed later (see section 7.4)). It is found that both the magnitude and
the angular dependence of parametgs and Bj,; are very similar; both oscillate strongly
in the forward angle range and a slight dephasing is measured between them. The full
calculation, employing second-order amplitudes as well as CIFS, is in qualitative agreement
with experiment for all three resonances. The extrema of the calculated oscillations become
nearer the experimental ones when including second-order terms. Second-Born calculations
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Figure 3. The angular dependence of resonance paramaigsBint and Beyc for the (289)1S
state of helium excited by 100 keV proton impact. Experiment: full circles. Theory: full curve,
full calculation; broken curve, calculation without CIFS; chain curve, calculations with CIFS and
without the second-order terms in the amplitude of two-electron excitation. ParaBagtdras
been multiplied by sintr &) /(&) to factor away the CIFS dependence.
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Figure 4. The same as figure 2 for thigs2p P state of helium.

without CIFS fail to reflect the actual dependences at all, while first-Born calculatiiths
CIFS reproduce much of the oscillatory structure observed at small ejection angles. Some
discrepancy between experiment and theory is noted for the damping of the oscillations when
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Figure 5. The same as figure 2 for thigp?)1D state of helium.

the emission angle increases; the experimental one is stronger f@<HES and(2s2p*P

resonances (3660°) angle range in figures 3 and 4, respectively (see also the related discussion
inl).
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The parameteBey has not been discussed before, and that is why we will pay more
attention to it here. In figures 3-5, the reduced valuesB#if are shown, obtained by
multiplying Bexc by the factor sinlir ) /() (see equation (31)) which results in a cancelling
of purely kinematic variations due to CIFS. According to equation (31), the resulting angular
dependence must be determined by a sum of the squares of associated Legendre polynomials
PLZM(cosee) weighted with partial cross sectiong/! of two-electron excitation of the target
to the magnetic subleval.

For the(2<%)'S state, withl. = 0, the reduce® 29 does not depend on the angle, only the
excitation cross sectiond, being defined. The second-Born calculation is visibly closer to
experiment than the analogous first-Born calculation. This implies that the electron density is
rather diffused in this state, and hence must be significantly influenced by electron correlations.
The polarization of the target by the projectile, partially accounted for in the second-order terms,
is more pronounced in the interference coefficients, at large ejection angles, where one needs
higher-order terms to describe experimental results.

The angular behaviour of th@s2p!P state clearly reflects its multiplicity = 1. A
remarkable agreement between theory and experiment is observed for this resonance. From
photoionization studies, it is well known that the coupling of t8s2p'P state with the
ionization continuum can be well described already in the lowest order, and correlations in
the adjacent continuum are not significant for the decay process. However, the geometry of
the state and its alignment by the projectile makes autoionization essentially coupled with the
scattered projectile, which manifests itself in the discrepancies between theoretically calculated
interference parameters,; and Bi,; and the experimental data for forward ejection.

Calculation results for th€2p?)'D state indicate that there is a strong contribution of
higher-order polarization effects in the target’s excitation. The second-Born calculation is not
enough to reproduce the observable behaviour of the excitation cross section. Experimental
points seem to reveal ah = 1 rather than arl. = 2 multiplicity, which might mean that
the higher-order terms would sum up with peculiar phases, with the interference terms in the
ionization cross section hence being very sensitive to the theoretical model used.

7.3. Cross sections of two-electron excitation

To explore the physical mechanisms beyond the process of two-electron excitation, we have
performed a number of calculations, using a target excitation amplitude of the form

fexc = td1 + fd2 + fc1 (45)

whichincludes the first-Born excitation amplitugg the second-Born amplitudg describing
two-step transitions through singly excited states and the first-Born amplijuderesponding

to the channel of excitation (specific for autoionizing states) via the adjacent continuum. The
separation of the components of the full excitation amplitude is discussed in more detail in the
appendix. The role of electron correlations in the target was investigated by comparing the
results obtained with two sets of discrete-spectrum wavefunctions representing autoionizing
states: one set was constructed from Slater-type wavefunctions within the configuration-
interaction approximation (Cl), and the other was calculated using the multiconfiguration
Hartree—Fock method (MCHF). The total excitation cross section can be expressed through
the sum of individual contributions and cross terms:

Oexc = Z o; + Z [ (46)

i<j
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with
4 2Ki . 2
or=@0)'my—= > [ Inl” (47)
' M=—L
and
K L
oi; :(2n)4mg?f_ > / 2 Re(;t}) dQ (48)
' M=—L

wherei, j = d1, d2 cl.

Table 1. Cross section (in units of 16° cm?) for two-electron excitation of the autoionizing
(289)1S, (2s2ptP and(2p?)1D states of helium excited by 100 keV proton impact.

2H1s (2s2p'P 2D
cl MCHF ClI MCHF ClI MCHF

od1 8.62 454 7.05 5.99 1.40 0.32
od2 254 235 5.22 5.06 797 7.65
oc1 199 197 251 292 253 2.08
0d1,d2 0.72 055 0.90 0.74 1.01 0.46
od1cl —0.93 0.66 0.65 197 -1.16 -0.17
od2.c1 -429 -410 -6.51 -6.72 -8.11 —-7.33
Oth 8.64 597 9.81 9.96 3.64 3.00
Oexp 3.40 8.80 9.00
Oexp Schulz 9.70 21.6

aThe sum of tP +1D).

The results for the total excitation cross sections and their components are presented in
table 1 along with our experimental data. The figures differ a little from those presented in
Moretto-Capellest al (1997), since more accurate summation algorithms have been used here.
In table 1 we also show experimental data of Scletilal (1995) derived by an analysis of the
resonance yield in energy loss spectra as a function of the scattering angle. Owing to the low-
energy resolution th€p?)'D and(2s2p*P resonances were unresolved in Scletibd (1995).
Therefore, the sum of cross sections for these states is displayed which is in good agreement
with our experimental results. F025°)1S there is a difference between the two experimental
cross sections, but the experimental error is remarkable for energy loss measuremgm®(9
in units of 10720 cm?).

While the theoretical estimate of the total excitation cross section for2e2piP
resonance agrees satisfactorily with experiment, the cross section fo2shéS state is
overestimated and for th@p?)D state is significantly underestimated. Such a discrepancy
is due to the higher-order contributions not included in the model. As noted in the previous
section, it can be seen thad; plays an important role in the excitation of th2s)!S and
(2s2p*P resonances, but not for that@?)'D (see also ).

Among the qualitative conclusions one could draw on the basis of table 1, we would pointto
a highly destructive (for a positive projectile) interference between the two-step mechanism and
the continuum-mediated excitation, as indicated bythe; cross term. For all the resonances
consideredgy, prevails ovewby, that is, the amplitude, is greater tham,; in absolute value;
however, the continuum component of the autoionizing state, as defined by equation (A33),
seems to screen the effect of the projectile and hence damps the two-step process. The two-step
tq2 and continuum-mediatedh channels proved to be almost insensitive to the quality of the
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orbitals. In contrast, the cross sectigi (and its interference with the other channels) requires
taking account of the correlation effects accurately.

We can see that two-electron excitation is a complex process involving many interfering
mechanisms, and it would be an oversimplification to identify an autoionizing state with a
doubly excited discrete-spectrum state in the target, retaining only the amplifudesiz,,
in (45). Most theoreticians stick to this approximation, since properly accounting for other
mechanisms requires much analytical and computational effort. However, as our analysis
shows, one can obtain only random agreement with experiment without a correct description
of the excitation processes involved. Thus, the close reproduction of our experimental data
(Moretto-Capellest al 1997) by Bodeat al (1998), who did not account for the embedding of
autoionizing states in the continuum at all, could serve as an example of how good agreement
with experiment may indicate incompleteness of the theoretical model rather than its adequacy.

Table 2. Sublevel populations{ = 0, £1, £2) in %.

(2s2p'P 2D
Cl MCHF Expt ClI MCHF  Expt
d1 5644 5941 325513 185824
d2 7129 7129 414811 414811
cl 4951 4951 205921 195922

Total 5347 5446 5149 53407 54388 325711

Table 2 presents the calculated values for the population of magnetic sublevels of the
(2s2p*P and(2p?)'D states, both total and by excitation channel, compared with experiment.
Generally, the population distributions appear to be less sensitive to the choice of the orbitals
(cf Cl or MCHF results). The first-order mechanism is rather close to experiment; this is
particularly remarkable for the;dCl calculations which reproduce very well the experimental
sublevel populations even for th@p?)'D state. This agreement seems fortuitous since a
poor agreement was already noted with the Born | calculationgifgrand Bin; (figure 4)
and for the total excitation cross section (table 1). In the theoretical model used, two-step
excitation overpopulates the sublevel with= 0, which indicates the necessity of accounting
for multipole polarization of the target, especially in the case of #pé)D state.

7.4. Relative phase

The dimensionless phase parameigfE;, 6.) defined by equation (42) could be used to
study resonance profile formation. In the triply differential cross section the relative phase
8. (Ei, 0e, 6r) has a clear meaning of a relative phase between the direct and resonant ionization
amplitudes (Godunoet al1990). On the other hand, the relative ph&ge;, 6.) which can be
defined from the doubly differential cross section is not straightforward since the interference
terms inAjn; and Bin; result from an integration over the scattering angle.

Theoretical and experimental angular dependencgs(@f, 6.) for the (289)1S, (2s2p!P
and (2p?)'D resonances are given in figure 6. The remarkable fact is that, despite the
discrepancies with the experiment in the other resonance parameters, excitation cross sections
and magnetic sublevel population, theoretical phases are in good agreement with experimental
data. This might mean that parametrization (43) is fundamental enough, reflecting some
essential features of the ionization process. In the back hemisphere, the calculation without
CIFS already provides a reasonable estimate of the phase; however, the account for post-
collision kinematics is important to describe the behaviour of the phase for ejection angles
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below 60. Including CIFS in the resonance terms of the total ionization amplitude would
qualitatively reproduce the observed phases, though it is necessary to include CIFS in direct
ionization amplitudes too, to attain a quantitative agreement; still, accounting for CIFS in
direct ionization alone cannot reproduce the observable behaviour.

The angular dependenég(Ei, 6e) characterizes the dependence of the resonance form
on collision kinematics. The similarity of that dependence for the resonances of quite different
symmetry and structure indicates that the major contribution to the phase comes from the
interactions in the asymptotic region far from the residual ion, and the structure of the
autoionizing state and its formation processes cannot be clearly reflected in that quantity.
The form of the dependence suggests that there is a universal kinematic component that can
be excluded from the phase (42) to obtain a different parameter that would provide a more
sensitive test of the interplay of various atomic processes (Godetraivi 990).

8. Conclusions

We have addressed the problem of extracting information about the cross sections of AIS
excitation from experimental data on heavy particle collisions with atoms. The principal
results may be summarized as follows.

(a) AIS can be considered as true atomic states, albeit of a particular sort. Using a specially
designed technique, one can measure the energies, widths and excitation probabilities of
AIS regardless of the channels of their subsequent decay.

(b) Separation of AIS excitation from direct ionization and decay can only be performed under
the conditions of the strong influence of a rapidly varying external field on the AIS decay
process, resulting in deviations of the resonance shape from Fano/Shore profiles, which
can be described by additional profile parameters. Fitting experimental data with the thus
obtained parametric formulae, one can determine excitation cross sections for individual
magnetic sublevels of AIS.

(c) The general approach suggested here has been applied to the reaction of single ionization
of helium by a heavy charged projectile, where the explicit analytical expressions for
the kinematic factor could be obtained in the eikonal limit. The profile parameters
for the (25)!S, (2p?)D and (2s2p'P resonances excited by 100 keV proton impact
have been calculated theoretically, and the cross sections of two-electron excitation and
populations of the magnetic sublevels of t#p?)'D and (2s2p'P states have been
estimated theoretically.

(d) A new parametric formula has been used to process experimental high-resolution spectra
of electron emission at different angles, which has allowed us to extract theoretically
introduced quantities from the experimental data. The results for profile parameters,
excitation cross sections, sublevel populations and relative phases have been compared
with experiment, and the underlying physical mechanisms have been discussed. The
overall agreement with experiment supports the applicability of the approach suggested.
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Appendix. Resonant ionization in the diagonalization approach

The diagonalization method was originally developed in a differential formulation by Balashov
et al (1968). It was subsequently complemented by an integral formalism by Ivanov and
Senashenko (1983) and then Hovedtal (1978). The equivalence of the two forms has
been demonstrated by Ivanov (1989) for a wide class of physical problems. Both differential
(Godunovet al 1989) and integral formalisms have been developed for our calculations, and
we could use both, for reasons of convenience. An integral approach will be used here, to
make the presentation of results more concise and transparent.

The helium atom and a structureless projectile form a four-particle system, which can be
described by the Hamiltonian in the simplified Jacobi coordinates

2 2
ﬁ:Z<_ivT2__é>+;_iv§_Z Zo 4z
=\ 2w "o Py — 72l 2up —Iri—Rl R
=hy+hy+ Vig+hy+ Vo= Hi+hy+ V. (A1)

The eigenfunctions of this Hamiltonian depend on the quantum numbers referring to both the
target electrons and the projectile. We denote the momentum of the projecife thye total
energy including the kinematic energy of the projectileibyand all the other discrete and
continuous parameters (e.g. the electron emission angle) by

The final state of ionization must satisfy the Sadinger equation

(E — H)|aKE) = 0. (A2)

Following the traditional procedure of Fano (1961), we seek the solution of (A2) in the form

aKE) = Z/dfcufﬂm(f{; aKE)+Z/dE/df<|bf{E>Cb(f{E; aKE). (A3)
A b

States|AK) include no outgoing waves for target electrons and represent the states with no
free electronsqlosed channejsstatesb K E) imply one outgoing wave for an atomic electron

and represent the states of a singly ionized target interacting with a scattered prapgetiie (
channel3. We neglect double-ionization states in expansion (A3), as well as the states related
to the formation of a quasi-molecule. Since the basis sets for both closed and open channels
can be chosen arbitrarily, we fix the vector sets by using the conditions

(WK'|H — ElvK") = (E,(K) — E)5,,8(K' — K") + V;,(K', K" E) (A4)
(bK'E'|H — E|cK"E"y = (E' — E)8,.8(K' — K")$(E' — E") (A5)
(\K'|H — E/bK"E") = V,,(K', K"E"; E) (A6)
(bK'E'\H — E\K") = V) (K'E', K", E) = V}, (K", K'E'; E). (A7)

Ingeneral, we do notdemand orthogonality of open and closed channels, and the only restriction
on the basis vectors in the closed-channels subspace is the condition of ‘weak’ orthonormality:

(AK'|WVK") = 8;,8(K' — K") + 0,,(K’', K"). (A8)

As has been demonstrated by Ramaker (1971) and Ramaker and Schraeder (1974),
normalization and orthogonality can be entirely abandoned for the basis sets, though the
physical side of the theory becomes much less transparent in that case.
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Typically, a finite number of closed-channel basis vectors are selected to be
orthonormalized and diagonaliZ#, so that
K? ~
E,(K)=E, + > and Vin(K', K"y = (AK'|Vo[vK").  (A9)
Hp
This is known as the restricted Cl procedure (Fano 1961). However, there may be other choices,
and, in general, the dependence®i K) on K may be not separable from the dependence
ona.

Constructing an open-channel basis satisfying condition (A5) is known as
prediagonalization (Fano and Prats 1973). For a final state containing only one free particle,
prediagonalization can be reduced to the solution of a set of integral equations; with several free
particles in the final state, prediagonalization is not trivial and requires additional assumptions,
some of which will be discussed later.

Projecting Schidinger equation (A2) onto either a closed chanfdk’| or an open
channelb K’ E’|, one obtains

(E — Ex(K))Ay(K':aKE) =y / dK V., (K, K; E)A(K; aKE)
-3 / dE/ dK V,,(K', KE; E)YC,(KE;aKE) =0 (A10)
b

(E— ENCy(K';aKE) — ) / dK V), (K'E', K; E)A(K; aKE) = 0. (A11)

Using the techniques of Howat al (1978), one can obtain from (A11) and the open-channel
asymptote that

Cp(K';aKE) = 8,,8(K' — K)8(E' — E)

+ > /o L. .
Xv: / dK Vo (K'E', K; E)A,(K; aKE)—E — 0 (A12)
which, after substitution into equation (A10), gives
Z/dK” {(E — Ex(K')8,,8(K' — K") — Ay (K', K7 E)} A (K";aKE)
=V (K',KE; E) (A13)
with
A(K', K", E) = V,,(K', K", E)
+ dK Vi (K, KEEVUKE K", E Al4
> / / Vi Vi (AL

With A, (K'’; a K E) obtained from (A13), one can construct a complete final-state vector as
|aKE) = |aKE) + Z / dK' |AE)K')A;(K'; aKE) (A15)
A
where we have introduced ‘modified’ closed-channel states (Fano 1961) as

IAWE)K') = [AK) +Z/dK/ = |bKE)Vb,\(KE K, E). (A16)
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Itis these ‘modified’ states that determine the process of multiple excitation of the target by the
projectile. It should be noted that, in genenid), contains contributions from the operatgy,
and hence the second term in (A16) incorporates the polarization mechanism of the excitation
of an autoionizing state via an adjacent continuum.

CoefficientsA ,(K'; a K E) contain resonant denominators responsible for autoionization
resonances in cross sections, as well as the amplitudes of autoioni¥atidd’, KE; E)
and the amplitudes of transition between different autoionization state€K’, K”; E)
containing both residual interactiow,, (K’, K”; E) and transitions through the adjacent
continuum described by the integral term in (A14). If a Cl basis has been chosen for the closed-
channel subspac#;, will represent the interaction with the projectile only; the influence of
relatively slow charged projectiles on autoionization could be studied in this way. An alternative
possibility is to use a completely prediagonalized basis for closed channelsVwita O.
This would mean considering autoionizing states polarized by the projectile.

As the coupled integral equation (A13) is too complex to solve exactly, it is approximate
solutions that are of primary importance for a theoretical model. Calculations presented in the
present paper have been performed using a ‘strong diagonalization’ approach, setting

My(K' K", E) ~ Ay (K, K'; E)8,,8(K' — K") (A17)
so that
Via(K', KE; E)
E - Ex(K') — Au(K', K, E)’
The real and imaginary parts of,, (K’, K'; E) give the resonance shift and width

A(K';aKE) = (A18)

-~ dE -~
AE,(K'E) = Vi (K, K'; E)+Z/dK/ — V(K. KE; B))*.  (A19)
B E—-E+i0

M(K'E)y=2rY_ f dK |V (K, KE; E)[*. (A20)
b

In general, an autoionization resonance becomes shifted and broadened due to both interaction
with the projectile and virtual transitions into the continuum. It should be noted that, in the
general case, resonance position
(K')?
24p
and widthT";, (K'E) are both functions of projectile momentum and final-state energy. Itis
under certain additional assumptions only that one could speak of AlS position and width as
atomic constants.

The amplitude of transition from an initial state (target in the ground state, incoming
projectile with momentuni) to a final statéa K E) can be calculated as

1(aKE|Ko) = (aK E|Vp| Ko)

E,(K'E) = E)(K') —

+ AE,(K'E) (A21)

tresk(aKEa K,|K0)
E - E,(K')— AE,(K'E) + %iFA(K’E)
(A22)

= tar(a K E|Kp) +Z / dK’
A

with
tar (@K E|Ko) = (aK E|Vp| Ko) (A23)
tress(@KE, K'|Ko) = (aKE|H — E[AK")((LE)K'|Vy| Ko)

= tgecr (A K E, K')tex ) (K'E|Kp). (A24)
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Since matrix elements (A6) and (A7) are calculated with the full Hamiltoﬁalamplitudes
(A23) and (A24) include higher-order terms¥j as well. From (A20) and (A24) one can see
that

MW(K'E)=2r) " f dK |tgecr WK E, K')[*. (A25)
b

We will call 7ex¢x the amplitude of the excitation of autoionization staj¢he quantity
, 2
Oexcr = C |[equ(K E, KO)| (A26)

with an appropriate factof, will be called the cross section of AIS excitation; it is directly
related to experimentally observable quantities, as shown in this paper.

For three free particles in the final state, open-channel prediagonalization is quite
non-trivial, and one has to make additional assumptions about the structure of continuum
wavefunctions. For fast enough projectiles, we can neglect polarization of autoionizing states
and adjacent continua by the projectile and describe the projectile’s motion with a plane-wave
state| K), expanding prediagonalized states E) into a sum of product statép E;)|K),

with B = E — K°/2)1p

aKE) =7 / dK |pE)IK)¢ (pK; aKE). (A27)
p
Using (A27) and the completeness conditions
> / dK ¢ (pK; aKE)*(p'K ; aKE) = §,,8(K — K ) (A28)
/ dK |[K)(K|=1 (A29)

one obtains

Formula (A30) allows one to replace summatlons over the compound states target + projectile
with summations over target states only, where projectile-induced polarization is notimportant;
such a replacement significantly simplifies calculations. Still, final state vectors in AlS decay
amplitudesgec, and direct ionization amplitudeg, cannot be simplified in that way, and one
has to account for essentially three-particle kinematics (Godahal/1989).

Splitting amplitudes/;,, into two parts,

(\K'|H — E|bK"E"y = (\K'|H; + hy, — E|bK"E") + . K'|Vo|bK"E") (A31)
and using substitution (A30), we can rewrite
texcr (K'E| Ko) = (AK'|Vp| Ko)

+Z/ /E_ VM,(K KE:; E)(bKE|Vy|Ko)

= (\K' |Vp|Ko)+Z/dK/ — (WK'|Vo|bK E) (bK E|Vp| Ko)

dE, N -
+y f — " (WK'|(H, — E)|pE) (pEi|Vp| Ko)
E.— E; £i0

= tg11 (K| Ko) + ta21 (K'E|Ko) + tc1,(K'E|Ko). (A32)
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That is, we account for direct AIS excitation, two-step excitation and correlation excitation
through the adjacent continuum. Interaction with the projectile can thus be included through a
Born-like expansion; however, we have neglected the third-order terms arising from two-step
(second-Born) transitions to the continuum, since our earlier estimates (GoelLad997b)
and other results indicate that their contribution is small enough in the case of interest for
this paper. Also, in thes,, amplitude, we have omitted transitions through the continuum,
retaining only the states of one-electron excitation in the sum over intermediate states.
Equation (A32) can be treated as separating three components in the ‘modified’ vector of
the open channel

/ / dEt =~ S rir /
I(AE)K') = |AK") +Z/ mmEt)(PEd(Ht — EYIAK')
t — Lt

+Zde/ |bKE)(bKE|Vp|AK’) (A33)

the second term corresponding to the admixture of the continuum though correlation well
known from photoionization studies, and the last term representing the admixture of the
continuum through the interaction with the charged projectile.

Avoiding the poorly tractable procedure of constructing prediagonalized continuum states
laKE), we could restrict ourselves to the first-order treatment, as described in lvanov and
Safronova (1992), so that

laKE) = |aK E[0]) +Z/dK/ |bKE[O] (bKE[0]|V|aKE) (A34)

with some primary basia K E[0]) and residual interactiori. One choice isto use plane waves

for the scattered projectile ar] instead of’, which would resultin a second-Born calculation
(Godunovet al 1998). However, this approximation gives a poor asymptotic for continuum
wavefunctions in the region of strong post-collision interaction, where one could use some
closed solution of the three-particle equations of motion preserving collision kinematics—for
instance, Faddeyev—Mercuriev wavefunctions (Godwetal 1989). In the latter case, using
(A34) we would encounter the hard problem of correctly determining the residual interaction,
and most work in this direction, including this paper, did not involve first-order final-state
corrections.
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