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.K.n exact formal solution is obtained to the problem of a system of fermions in interaction. 
This solution is expressed in a form which avoids the problem of unlinked dusters in many­
body the6ry. ~he technique of I<'eynman g1·a.phs is used to .derive the series and to define 
linked terms. The grupbs are those appropriate to a system of many fermions and are !lied. to 
give a new derivation of the Hartree-Fock and Brueckner JDethods for this problem: 

l. INTRODUCTION 

The Hartree-Fock approximation for the many-body problem uses a wave function· 
which is a determinant of single-particle wave functions-that is, an independent· 
particle model. The single- partiCle states are eigenstates of a particle in a potential V, 
which is determined fi·om the two-body interaction v by a self .consistent calculation. 
The Bmecknertheory (Brueckner & Levinson I 955; Bet he I 956;-_Eden I 9 56) gives an 
improved method of defining V and shows why the -residual effects of v not allowed for 
by V can be small. In particular, in. the nuclear problem the correctwnsto the energy 
are small, even though the corrections to the wave function are large. The theory thus 
gives a reconciliation of the shell model, the strong two-nucleon interactions, and the 
observed two-body correlations in the nucleus. The smallness of the corrections is 
due to the operation of the exclp.sion principle. Bethe (1956) has shown that this 
same exclusion effect makes even the Hartree-Fock approximation good for quite 
strong interactions, such as an exponential potential fitted to low-energy nucleon-
nucleon scattering. . 

The first problem on which calculations have been made is that of 'nuclear 
matter', that is, a very large nucleus with surface effects neglected . (Brueckner 
1955a; Wada & Brueckner 1956). In this J)roblem the aim is to show that at a fixed 
density the energy is proportional to the 1mmber of particles, and that as the density 
is varied t-he energy per particle has a minimum at the observed density of large 
nuclei, and that this minimum value gives the observed volume energy of large 
nuclei. The single-particle wave functions are plane waves, and the potential Vis 
diagonal in momentum space (in contrast to the ordinary. Hartree potential which 
iii diagonal in configuration space). The independent-particle model state is a' Fermi 
'gas' state with all the one-particle stat~ filled up to the Fermi momentum kF which 
depends only on the density. . · 

Brueckner & Levinson's derivation, and that of Eden, is based on the multiple 
~cattering formalism of Watson (Watson 1953). The proportionality of the energy 
r;f nuclear matter of a given density to the number of particles follows at once from 
t~e theory provided certain· terms which represent several interactions occuri"ing 
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independently are not present. There is no satisfactory proof of this in the usual 
presentation of the theory. It has been shmvn (Brueckner 1955b) that the usual 
perturbation theory for bound states can be recast so that these terms disappear 
from the first few orders. The present paper proves a new perturbation formula in 
which these terms are absent and so completely solves this problem of 'unlinked 
clusters'. 

The method of Feynman graphs (Feynman I 949) is used to enumerate the tenus 
of the perturbation series. To derive the 'linked cluster' result it is essential to 
describe states in a particular way explained later, which is equivalent to treating 
the independent-particle ground state as a 'vacuum' state. This description then 
emphasizes the important exclusion effects, and is used to give a derivation oftlw 
Hartree-Fock approximation which seems very natural ill this context. The ideas 
of the Brueckner method for dealing with strong potentials are then introduced and 
are shown to fit naturally into the Feynman graph treatment. 

2. Trn:E:-DEPEXDENT PERTURBATION THEORY AND FEYNl\IAN GRAPH ·ANALYSIS 

Consider A particles with the Hamiltonian 

A 

H = ~~+~vii" 
i=l £<i 

(2·1) 

~ is the kinetic energy ofthe ith particle and vii the interaction potential between 
particles i andj. Introduce the one-body potential V which is to be chosen later to 
give a reasonable independent-particle model of the system. Let·fi be this potential 
acting on particle i. Define 

Ho = ~ (~+ fi), 
i 

HI = ~ vii-~ fi, 
i<j i 

so that H = H0 +H1• 

(2·:!) 

(2·3) 

(2··1) 

Expansions will be in powers of H1, but the complete series obtained will finally Le 
rearranged so that higher-order terms represent small effects when V is suitably 
defined. Let the solutions of the one-particle Schrodinger equation 

(2·.i) 

be a series of one-particle eigenstates 1fr n with eigenvalues.J?~~.~. Y must be a potential 
which gives a discrete series of bound eigenstates 1fr n. (From now on suffixes 111, ' 1 • 

etc., will refer to these states, not to particles.) 
The second-quantized formalism will be used. Let ?JT •• 1Jn be creation and destrnr · 

t.ion operations for the state lfr-n with the usual anti-commutation relations. Defiw 
matrix elements of v and V by 

(rsl vI rnn) = f v:(l) r:(2)t•l2lfrn,(l) y,.(2)drldT2, 

<~I VIm)= J V~(l)Jilfrm(l)drl. (:!· 7) 
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The matrix element of v defined by (2·6) is not antisymmetrizedand corresponds t() 
an interaction in which one particle goes from state Vrm to state Yr• while the other 
goes. f~m state ifr., to state t 8 • With these definitions. . . . 

Ho = "i:.En'f/~1/n• · (2•8) 
n . 

H1 = I:(rslv! mn) 'f/~7!!7Jn1Jm 
-'- :E(r I V I m) 7J~ 1Jm• {2·9) 

'fhe fi.rstsum in (2·9) is over all distinct matri."'IC elements, a matrix element (rsl v I mn) 
being characterized by the pair of transitions (Ym to tr) and (1/r., to t.). Thus 
(srI vI nm) is not distinct from {rsl vI mn); but (srI vI mn) is distinct. This way of 
introducing antisymmetry is the most suitablr; for graphical representation. 

An eigenstate cD of H0 is a determinant ffJrmed from A of the 1/r n and can be 
described by enumerating these A pne~partic:le states. ~different description is 
necessa,ry to obtain the results of this pap~r. It is supposed that H0 has a non­
degenerate ground state ~0 formed from the ]rJ'•vest A of the t n· The proofs of this 
paper only apply to this case, that is, only tl"> the ground state of a closed-shell. 
nucleus or the ground state of 'nuclear matv:r',. The states ·1/r., occupied in 0 0 will 
be called unexcited states, and all the hightr ;;tates tn will be' called excited states. 
Thus for 'nuclear matter' with a Fermi mow•:r.ttJ.m kF, an unexcited state means 
one· ~th momentum k < kF, an excited statE.: t..ne with k > kF. An eigenstate 0 of 
H0 can now be described bY, enumerating all tbf:. excited states.which are occupied, 
and all the unexcited states which are not 0':"'...-:JT•ied. An unoccupied u11:excited state 
is regarded as a.' hole', and the theory willdr:--':11 with particles in excited states and 
holes in unexcited states. This.treatment k ;:;.::;,.kJgO"!lS to the theory' of positrons, 
"'ith cD0 as the 'vacuum' state.·An \mext'.iwl :;tate is automatically regarded as 
occupied and so excluded for other particlee. ::::.:c:-~H a hole in that state is intr!Jduced 
explicitly. Thus the chief effect of the ex<.:~ .,.,_,n principle is emphasized by this 
description. This is the essential different-.r:- f.:-;;~:. the theory of positrons, in which 
there is symmetry between particles ami ;_;-_':·':;-In this theory the asymmetry 
between particles . a.nd holes is emphas~.: T '; introduce. this method formally 
equations (2·8) and (2·9) are retained, but~~==::. ::>:rpretation of 7Jh, 1/-n for unexcited 
I{ n is altered. '1/n will now be the operator CI~:: • .-.~ a. hole in state ifr n• 1Jl, the operator 
destroying a. hole. . 

The following derivation of the perturhh.:"·.r. fmmula uses time-dependent per· 
turbation theory in the interaction represe::.:.:;.·:.··.: .. In this way certain of the results 
needed appear more naturally than in a con:;., .. ~·~·:.- time-independent presentation. 
I..et cD0 be the ground state of H0 as·describe6 -i:·.r,·;rf:, assumed to be non-degenerate, 
and let 'l"0 be the lowest eigenstate of H. 't'",, ,,._:__.-,&:derived ftom 4>0 by adiabatically 
switching on the interaction Jl1 over the t.:.~ ~:-. ::er:val - oo to 0. For this case of 
a discrete series of eigenstates with a unic::tf ~7",•1rid state the adiabatic theorem 
c:an be proved in the following form (Gell-K< .;·. 1.<: J .. ow 1951). 

Define JJ1(t) = 0tHot~riJI.t,:21, . (2·10) 

and let 
<n 

UA\= '}:. (-i)n 
n=O 

f H1(t.,.,)EIJ+,j ... H1(t.,) dt1 ••• dt.,. (2·11) 

0>1,>11 ... >t.. 
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As a-+O.the unitary operator U.,. describes the adiabatic process. 

Let \TJ' '1' ua; cl>o 
yo = ~~~~fcJ>o I rf~l'i3. 

By using Feynman graphs this limit will be shown "to exist and an explicit expressiCln 
derived for it. Then the adiabatic theorem states that 

where 

and 

Il'Yo = (Eo+~E)'Yo, 

Ho cl>o == Eo cl>o 

~E = (cl>o I Hll \fo) =lim (Cl>o I Ill u .. _.l <~>o~. 
· . 11-+0 (cl>o I U.,.l cl>o) 

FIGURE I. In all the graphs the direction 
of increasing time is upwards. 

FIGURE 2 

(2·13) 

(2·14· 

(2·1:., 

The required perturbation formulae for \}'"0 and M will be obtained on carrying out 
the time integrations in thee:xpression forth~ limits in equations (2·12) and (2·15). 

H1(t) is derived from equation(2·9) for H1 by substituting 11n(t) for 11n• where 

(2·lti' 

and then multiplying by ecct. The expression (2·11) for U.,. then becomes a sum :•f 

products of v and V matrix elements, elEt and e"'' factors and operators 17t amf,:. 
Anal~·sis of the products of operators by the same algebra as is used in provill:.: 
Wil•k's theorem (Wick I9S6) leads to the following expression for ·u~~ <1>0 as a. sum •·I 
terms represented by Feynman graphs. Each graph represents a. series of Hart· 
interactions. A particle in an excited state is represented by a line in the directin:t 

. ofinrrrasiug time .. A hole in an unexcited state is represented by a line in the oppo,.a'• 
direction. A matrix element (rsl.v I mn) in ll1(t) is represented as in figure l.Thi."' l· 
for the case in which ifrm, ljl',, ljl'8 are excited states and -rfrn an unexcited state. I! 
reprt·~<>nts an interaction between tw-o particles in which one is scattered. frni:' 

Vm fl1 ~i', while the other jumps from lfr n into tfr8 leaving a hole in y 11 • • ,Vith this gt"·1i';, 
is a~ociated a time fact.:>r el(E,+Es-Em-1-:,.lteat. The other combinations of exc-ik: 

and Utll'xcited states l;i'111 y,,ifr;~a:rercprese~1ted similarly. . 
A matrix elemen.t (r IV lm) is re1'lresented as in figtire 2. This shows a parti· ,· 

scnttt'rt.'d from state Vm to Vr by l', both states unexcited. Initially there-was a hu · 
in state Vr• otherwise the interaction is excluded, and finally there is a holt• :: 
state v, .. 
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There are further possibilities whi_ch do not occur in positron theory. Here 
the unexci!,ed states are occupied by real particles not explicitly represented tO the­
graphs, but interacting with each other and with the particles represented in the 
graphs. These-particles will be called passive unexcited particles. Their irite~tiom 
are the most important ones present, and it is these interactions which must be 

-----on 

FIGURE 3 

allowed for in'"the choice of v~ They are represented as in figure 3. This shows a 
particle scatte~d from excited state lfrm to excited state 1/r,. by thE? particle in the 
unexcited. state Vn which remains in the same state after the "interaction. (In 
'nuclear ma.tter' this is 'forward' scattering.) Figure 3 corresponds to a_ factor 

(rn I vI mn)el(ErE,.u. 

The 'exchange' term corresponding to this contains the matrix element (rn I v I nnt) 
and is represented as in 'figure 4. Finally, figure 5 shows the graphs repi"Qsentin~ 
interactions in which only passive unexcited particles take part. The matrix elementfS 
areforfigure5(a), (mn I vI mn);forfigure 5 (b)(mn I vJnm);(orfigure5(c)(n I VI n). 

(a) G----:.0"' 

<•> e 
n. 

(c)a-- ---
FIGURE 4 ·~'IGURE 5 

The algebra ofW'ick's theorem now gives the following rule for Urx <1>0 • All distinct 
~rraphs starting with no free lines at the bottom, that is, witl1. <1>0 , ~_r:e drawn. Eaeh . 
-uch graph'consists of a numbeJ" of open loops ofmicleon"iii1es and a number of clo~d 
~ .. ops. For example, figure 6 contains one open loop and two clo:;;ed loops. For each 
:Taph multiply the v and V matrix clements and the e1E' and c"" factors and 2 

:;tl'tor (-:-I)'~+', where kiH the number of internal hole lines (four in figure 6; the 
!ine htbelled m is an external line) and l the number of Clo!>ed loops. A passi H: ·­

Jilexcited particle ~oop as ii1 figure 5 (c) contributes a i'lus sign, counting as one 
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hole 1ine and one closed loop, while figure 5 (b) has a minus sign having h n 

-bole lines and one closed loop~ Each V matrix element has a minus sign atta<'}1p,; 
·since. it. occurs with :a minus sign in H1• Attach the pairs of creation operatm·· 
corresponding to the external lines at the ends of each open loop with the hnl.· 
operator to the right (?J~?Jm for figure 6). Finally, carry out the time integration<. 
Then c..: <1>0 is the sum of all these terms acting on Cl>0 • It is important to note that 

---1\_ 

-----~V 
FIGURE 6 

the exclusion principle is to be ignored in labelling the graphs. The major efft>et" 
of exclusion are already taken into account by the 'hole' picture. as describt-cl 
above. The rest must not be included if the results of § 3 are to be derived.' 'fh·· 
algebra of the 11 operators does give this result, which is merely a careful applicat.inll. 
to this case of the principle that. intermediate staws need not be anti-sym · 
metrized. In fact all graphs which contradict the exclusion pr4lciple are exactly 
cancelled by the corresponding' exchange' graphs. Ho"\'\•ever, in § 3 certain graJ•h · 
will be removed imd ·then this cancellation will no longer occur and the graph­
contradicting exclusion will represent important 11hysical effects. This represcnt .. -
tion is essential for the derivation of the 'linked cluster' result. 

3. THE LINKED-CLUSTER PERTURBATION FOR.I."\IULA 

Any part of a graph which is completely dis.connected from the rest of the graJ•h 
and which has no external lines attached will be called an unlinked part. In th·· 
expression for U:z <1>0 before the time integrations are carried out the Jines of a grato" 
can be labelled independently of each other (tlris is where it is essential not to l::t • • 

to take exclusion int{) account), and the factors attached, to the interaction lin...,- a.-. 
independent ·of each other: Now consider a graph containing unlinked part~ r.:· 
take togethendth it all the graphs which differ only by ha.ving tl}e intera.ctiort 4 :. 

the unlinked parts in different positions 1·elative to those in the rest of the gr;~! 
The order of the interactions in the two parts separately is kept fixed. Let the ti" 
of the interactions in the unlinked part be t1 , t2, ... , t, and in the rest be t~ t; .. · '. · 
where tho ord<"r of the two parts separately is given by: 0>t1 >12 >·•·>t .. '" 
0 > t~ > t;> ... > t:n. The sum over all the different relative positions of the two r '~· · 
is obtained by carrying out the time mtegrations with_ only th~ rC$trictious 1111 r:' . 
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.)rder of the times and so is the product of the expressions obtained from the two 
·.1arts separately. A graph containing no unlinked parts will be called a linked graph. 
!t. follows that u« Cl>o is given by the rules of § 2 applied to the sum of linked graphs 
iuy, multiplied by a factor given by the sum of all graphs consisting_ only of un:­
:u1ked }Jarts. This factor is just what the rules of § 2 give for (Cl>0 I Ua.l Cl>0). Thus 
i '0 as defined by ( 2·12) is given by taking the limit a-+ 0 in the sum of linked graphs ·. 
anly. . 

The result of carrying out the time integrations in this sum may be written as 

'¥0 =lim ~E-- ;, . H1 ... E ~ 2. H1 E ~ . H1 <1>0• (3·1) 
IZ .... o L o- o+l1'1.tx o- o+ 1IX o- o+Ia 

~means that the terms are to be enumerated by the linked graphs described 
L 

1bove. cJ)0 cannot occur as an intermediate state in a linked graph as the part of the 
;raph below that intermediate state would be an unlinked part. Since all other 

(a) 
FIGURE 7 

intermediate. states have energies greatel' than E0 (this is where the limitation to 
non-degenerate ground states is useful), the limit in (3·1) can be taken by putting 
:z = 0 as no zero energy denominators can occur. The final result can then be written 

(3·2) 

The energy .shift AE is given by (2·15), and using the same arguments as for Ua. <1>0, 
... 

l!E = t< <f>o I Hl (Eo~ Ho Hl r I <f>o)· (3·3) 

where now ~ means summed over all connected graphs leading from <1>0 to <1>0, that 
L . 

is. with noextemallines. (3~2) and (3·3} are the linked :ciustcrperturbationformulae. 
They differ from the usual. bound state perturbation formula by having E0 in the 
denominator instead of the usual E0 + l!E. This difference is compensated by the 
•liffcrent enumeration of terms, that is, by summing only oyer linked graphs and by 
!~'!loring exclusion as described jn. § 2. 

A typical graph contradicting the exclusion principle is figure 7 (b). Before the 
::nlinked parts were removed this wns cancelled by figure 7 (a) which has the same 
:natrix elenients and an extra minus sign~ Figure 7 (a} represents an interaction of 
'he passive particle in the unexcited state 1frm· :Many repetitions of figure 7 (b) 
eombine to give the modification of the energy of state ·y, m due to this interaction. 
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These linked-cluster expansions can be derived without using time-dep€mdent 
theory. 'Y0 can be defined to be given by (3·2). It then follows tha.t 

(Eo~Ho)'Yo = tBl (Eo~Honl)"·wo (3·-&J 

and (3·5) 

The right-hand side of (3·5) is given by those graphs which are linked when the last 
H1 is removed. Some care is needed to prove this, since Wick's theorem does not 
immediately apply to the time-integrated expression (3·4), Subtracting (3·4) from 
(3·5) gives 

(3·6) 

FIGURE 8 

where ~· means summed over all graphs containing an unlinked pa~ but wJUch an­
linked when the last H1 line is removed. Such graphs must be of the type shown ir: 
figure 8. Now the last H1 line in the unUnked part may be kept :fixed and a sum take!. 

ov~r the different positions of~he rest of the unlinked.partrelative to the rest of tht' 
graph. By using algebraic identities on the energy ;denominators which areequivalt'nt 
to the separation of the time integrations in the time-dependent proof it can f,... 
shown that the right-hand side of (3·6) is ~qual to the product of'I-.0 with the sum .. : 
all connected closed graphs, that is, with llE as defined by (3·3).-Then (3·6) gi\'t.,. 

the required result. 
This method of proof has one advantage over the other in that it does not ti>'' 

time-dependent methods to prove a time-independent result. H~wever, the tim•·· 
dependent proof gives the easiest way of enumerating the terms correctly and nt 

combil1ing the contributions ofdifferent positions of unlinked parts. The ;~.diabat; 
theorem used can be strictly proved under the conditions of this paper. The tin•• 
independent method has been used by the author to extend the results.to excir.-•; 
and degenerate states. 

4. CHOICE OF V: THE l!ARTREE-FOCK 1\IETHOD 

The simplest way to choose JT is to make it allow for the first-order interact: 
with passive unexcited particles. Thi& is done by makllg the graph parts in figu~·· 
cancel, that is,· by defining 

(rl VIm)= ~{(mlvlmn)~(rnlv1nm)}. " . . 
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The sum is over all unexc~ted states ifrn. The states 1Jr n nrc determined !; :· 

(T+ V)lfr. = E.'ifr •• (4·2) 
(4·1) and_(4·2) a.re the Hartree-Fockself-consistent equations.· 

----,.0 

F.IGU&E 9 

This defthition ensures the complete disappearance of the V interac~n·n a.nd the · 
interactiona with passive unexcited, states. from aJ1 graphs •except tilt ~onnected 
closed parts in figure 5. These represent the first::Order terms .in A.E. cJ·~~ure 5 (c) 
contributes -_.X.(n IV In), while figures 5(a)and (b) contribute 

- A . 

!- :£ {(mn!v!mn)-(mnlvlnm)}'= i:£(n! Vln> 
~· . n 

(4•3) 

when summed over all distinct possibilities. Also, 

E0 ;.,. :£{(nIT I n)+(n IV In)}~ (4·4) 
n 

Thus, to the first order in 11, 
. . . 

E=E0 +M== l:;(n1Tin)+!:£(nl Vln). 
. n 'n 

(4·5) 

This ·factor of i is familiar in the Hartree-Fock method. 

V- __ y a~~ o 
FIGURE 10 FIGURE 11 . . 

The higher-order corrections to E. are given by the sum (3·3) over aU vmnected 
g1·a.phs with no external lines and ·with no V interactions and no intert.•J;,r,r.:s with 
passive unexcited particles. The wave function 'F' 0 is given by the suw. • ~· 2) again 
without the above interactions. The expression for 'l"0 contains terms wl· .• •.!• are the 
product of many factors represented by ~iTa phs like figure 10. The resu.h .~ that ~0 
i;; only a ~cry small component of'¥0• (Kotf! that '¥0 is normalized to((!;" Y 11 j = 1.) 
However; the corresp011dhig correction tr> the energy can contain the fi.·.~.t;l" repre­
~ented by figure 11 once only. Bethe (1956) has shown that the exclusi(.J:. r-rindple 
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'vhich limits the particles in excited statef; to states with momentum :> kF can mnh 
this coiTection fairly small even for strong potentials for "the valties· of kF of inter(;,.;t. 
Thus the Hartree-Fock method_ ca:tl give the energy q;,1ite well even for stroug 
potentials. This is a quantitative version of the oldargument that strong interaction~ 
would be inhibited by the exclusion principle. It applies to the energy but not to 

the wave function. There are certainly strong correlations between nucleons in 
a nucleus and the Brueckner theory can be used to explain them (Brueckner, Eden 
& Francis 1955). 

5. THE BRUECKNER THEORY 

The nucleon-nucleon potential very probably has a steep repUlsive· core at small 
distances. (This will certainly ensure· saturation but a proper theory is needed to 
obtain an energy minimum at the observed nuclear density.) For this v it is clearly 
impossible to choose V by the Hartree-Fock method, as the ·matrix elements of 

}---~· 
(a) 

FIGURE 12 

v will have a large contribution from the core. The Bnieckner theory replaces r: l•:: 
a reaction matrix t calculated from :a. two-body·equatioil of the type 

1 
t = v+v Eo-H,/ (5·1) 

The idea is to derive V from t instead offrom v. Since H0 contains V, V occurs in the 

energy denominator so that there is a further self-consistency requirement i1 · 
addition to the Hartt·ee-Fock condition on ~he wave functions. In fact, for'nucl<~•1 r 
matter' the Hartree-o-Fock self-consistency disappears since the. wave Junctionc.. 
must be plane waves . .Brueckner (1955il) has shown that thisnewself-consistewy 
is important. 

The procedure in terms of graphs is as follmvs, Corresponding to any graph wit), 
a single v line in a certain position ::is in figure 12(a), there are more complicated nn> · 

in which figure 12 (a) is replaced by the'laddcr' gra11h of figure 12 (b); In the intd'· 
mediate states of figure 12 (b) both. particles are in excited states. The sum of all ~n' :~ 
parts is given by an integral equation of the tYJ)e (5·1). When figure 12 (b) ~ccurs a· 

1iarl of a larger graph the energy denominator for the intermediate state containiJi...: 
f. I • 

~~~ (u_~.~) -~-~-~=~+~-~-~-~ 
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where E R is the excitation energy of the other particles present while the interaction 
represented in 12 (b) occurs and 8E is the excitation energy of the complete inter­
mediate state at the beginning of the interaction. The excitation energy of a state 
is the' sum of the energies En of occupied excited states minus the sum of the energies 
of unexcited states in which there are holes. The integral equation for the sum of the 
terms represented by figure 12 is then 

<rsj vI m'n') (m'n' It I mn) 
(rsltjmn) = (rslvlmn)+ ~ · , (5·3) 

m'n' Em+En-Em'-En.-8E 

where the sum is over Vm·• ljf.,. excited states only. The solution is a matrix t(8E) 
which can be used to replace v and which is finite even for a repulsive core potential. 

A graph will be called irreducible if it contains no 'ladders' of the type of 
figure 12 (b). A sequence of v interactions as in figure 12 (b) only forms a 'ladder' if 
all the intermediate states a.re excited and if there are no other interactions in other 

FIGURE 13 

parts of the graph between the ends ofthe ladder.All graphs can be obtah1edby 
substituting independently 'ladders' for each v line in the irreducible graphs. The 
terms of the linked cluster expa11$ion can thus be grouped together so that each 
t' matrix element is replaced by a matrix element oft( oE). oEi;,-theexcitation energy 
of the intermediate state to the right of the matrix element in the series (below it in 
the graph). The sums must now be taken .ovedinked irreducible graphs 6niy. 

Figure 7 (b) is an important type of ladder graph and is absorbed into the tmatrix 
element (mn I t I mn) represented in figure 13; Note that ( 5· 3) is not antisymmetrized. 
Theladderg>aphin which the lines of figure 12 (b) crossoveriscountedin (sri tjmn). 

r can now be defined to cancel the t-interactions with passive unexcited states, 
that is, by ( 4·1) with v replaced by t. However, the cancellation cannot be complete 
because of the dependence oft on 8E . . (The procedure in this problem c~mtras.t,s with 
that. in field theory in which the time ordering and the dependence of onepal't of 
a gr~ph on another are completely removed by introducing an extra energyyariable 
foretlCh particle. This docs not seem appropriate here.) The best that can be done is 
to choosesome average value of oE appropriate to the matrix element oft being· 
e,-a)wited. 

Equation (4·5) is replaced by the follo\\-ing expression for the energy to first 
ordt'l' iu t: 

E = L (nIT In)+ t L {(mn I t(O) I mn)- (mn I t(O) I mn)}. (5·4) 
" m.n. 



278 J. Goldstone 

The ( n I V I n) _in $ 0 is cancelled by the term represented by figure 5 (c) whate•~r 
thedefi.nitionofl'~ The second term in (5·4)willequalt ~ (n I l'l n)onlyif(n IV 1 n) 

-. 11. - .-

is derived from· t ·with 8E = 0. This is the . most straightforward choice for th<> 
diagonal elements of v between unexcited states. 

·Q ~~ -(J----0 
Fipre.l4 represents a_term in the energy given b;y 

(mp !t(8E) I m'p') {-8~) (m'n I t(8E) I m'n) ( "-- 8~) (m'p' I t(O) Imp), (5·5) 

where (5·6) 

An avera.ge.ofthis 8E used in the definition of (m'l VIm') will ensure as JnUch 
cancellation of this term as possible. For 'nuclear matter' the conse:rVation of 
momentum limits the possible values of 'lj1'11 tb"11 , and '1frm give.ll '1frm•· --v __ _ 

: ______ :D· 
- (a) (b) 

FIGURE J5 

Apart from the corrections due to the dependence oft on E the remaining graphs 
for the energy all represent three or more particle interactions.· It is hoped that the!'!t' 
are small because of the exclusion-principle liniitationof the number of states to bt· 
summed over (Brueckner & Levinson 1955; Bethe 1956}.Two typical three-particle 
interactions are shown in figure 15. Figure 15 (a) represents two particles jumpin~ 
from states lfrm 'ljJ' n. into excited states lfrm·V n'· Then the particlein Vn• falls back iuto 
lfr n while another particle jumps from 1fr 11 into 'ljJ' p'· Finally the particles in lfr 11• and 
1jF ,.. interact and fall back. The corresponding matrix elements are 

(pm It I p'm') (np' It I n'p) (m'n' [ t I mn). (5·i) 

Figure 15 (b) represents two particles jumping from states !frm Vn into states Y,,.•V"·· 
The particle in v.~· then interacts with the particle in the occupi~ state Vp· The 
partide in v n' is scattered into tfrq while that in tfr1) jumps into the hole in ifrmlea.'·ii17 
a hole in tfF p• Finally t~e particles in Vrn•• tjF q fall back into the holes in y 11, ."1/1,.. Tht" 
corresponding matrix elements are 

(np It I qm') (qm It I n'p) (m'n' It I mn). (5·8) 
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