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An exact formal solution is obtained to the problem of a system of fermions in interaction.
This solution is expressed in a form which avoids the problem of unlinked clusters in many-
body theory. The technique of Feynman graphs is used to derive the series and to define
linked terms. Thé graphs are those appropriate to a system of many fermions and are used to
give a new derivation of the Hartree—Fock and Brueckner methods for this problem.

1. INTRODUCTION

The Hartree~Fock approximation for the many-body problem uses a wave function
which is a determinant of single-particle wave functions—that is, an independent-
particle model. The single- particle states are eigenstates of a particle in a potential ¥,
which is determined from the two-body interaction v by a self-consistenit calculation.
The Brueckner theory (Brueckner & Levinson 1955; Bethe 1956; Eden 1956) givesan
improved method of defining ¥ and shows why the residual effects of v not allowed for
by V can be small. In particular, in the nuclear problem the corrections 1 tothe energy
are small, even though the corrections to the wave function are large. The theory thus
gives a reconeiliation of the shell model, the strong two-nucleon interactions, and the
observed two-body correlations in the nucleus. The smallness of the corrections is
due to the operation of the exclusion principle. Bethe (1956) has shown that this
same exclusion effect makes even the Hartree—-Fock approximation good for quite
strong interactions, such as an exponential potential ﬁtted to low-energy nucleon-
nucleon scattering.

The first problem on which calculations have been made is that of ‘nuclear
matter’, that is, a very large nucleus with surface effects neglected (Brueckner
1955a; Wada & Brueckner 1956). In this problem the aim is to show that at a fixed
density the energy is proportional to the number of particles, and that as the density
Is varied the energy per particle has a minimum at the observed density of large
nuclei, and that this minimum value gives the observed volume energy of large
nuclei. The single-particle wave functions are plane waves, and the potential V is
- diagonal in momentum space (in contrast to the ordinary Hartree potential which
is diagonal in configuration space). The independent-particle model state is a ‘ Fermi
yas’ state with all the one-particle states filled up to the Fermi momentum &z which
depends only on the density.

Brueckner & Levinson’s derivation, and that of Eden, is based on the multiple
scattering formalism of Watson (Watson 1953). The proportionality of the energy
uf nuclear matter of a given density to the number of particles follows at once from
the theor y provided certain terms which represent several interactions occurring
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independently are not present. There is no satisfactory proof of this in the usual
presentation of the theory. It has been shown (Brueckner 19550) that the usual
_perturbation theory for bound states can be recast so that these terms disappear
from the first few orders. The present paper proves a new perturbation formula in
which these terms are absent and so completely solves this problem of ‘unlinked
clusters’. oo _

The method of Feynman graphs (Feynman 1949) is used to enumerate the terms
of the perturbation series. To derive the ‘linked cluster’ result it is essential to
describe states in a particular way explained later, which is equivalent to treating
the independent-particle ground state as a ‘vacuum’ state. This description then
emphasizes the important exclusion effects, and is used to give a derivation of the
Hartree-Fock approximation which seems very natural iri this context. The ideas
of the Brueckner method for dealing with strong potentials are then introduced and
are shown to fit naturally into the Feynman graph treatment.

2. TIME-DEPENDENT PERTURBATION THEORY AND FEYNMAN GRAPH ANALYSIS
Consider 4 particles with the Hamiltonian

H = % T+ X vy (21)
i=1 i<j
T; is the kmetxc energy of the ith particle and v;; the interaction potential between
particles ¢ and j. Introduce the one-body potent1al V which is to be chosen later to
give a reasonable independent-particle model of the system. Let ¥, be this potential
acting on particle ¢. Define

Hy = Z(Ti+V¢), (22)
H Z vzj E IIi; (2.3)
i<j
so that H = H,+H,. ; (24)

Expansions will be in powers of H,, but the complete series obtained will finally be
rearranged so that higher-order terms represent small effects when V is suitably
defined. Let the solutions of the one-particle Schrodinger equation

(T+V)y =By (25)

be a series of one-particle eigenstates yr,, with eigenvalues £,. V must be a potentiui
which gives a discrete series of bound eigenstates gﬁn (From now on suﬂixes n, .
etc., will refer to these states, not to particles.) :

The second-quantized formalism will be used. Let 71, %, be creation and destruc:
tion operations for the state 3, with the usual anti-commutation relations. Defiue
matrix elements of v and V by

Grslo]mny = VRO UHE Bal1) ) dradry, 24y

Vi - v an, e
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The matrix element of v defined by (2-6) is not antisymmetrized and corresponds to
an interaction in which one particle goes from state i/, to state y,, while the other
goes from state an to state yr,. With these definitions ’

Hy= S Bt : (28)

=X (rs I v | ma) 9}y m
~Er | V|m)uln,. _ (29)
The first sum in (2-9) is over all distinct matrix elements, a matrix element {rs | v | mn)
being characterized by the pair of transitions (y,, to ¥,) and (¥, to ¥,). Thus
(s7| v | nm) is not distinct from {rs | v | mn); but (sr | v | mn} is distinct. This way of
introducing antisymmetry is the most suitable for graphical representation.

An eigenstate ® of H, is a determinant formed from A of the i, and can be
described by enumerating these 4 one-particle states. A different description is
necessary to obtain the results of this paper. It is supposed that H, has a non-
degenerate ground state @, formed from the lowest A4 of the y,,. The proofs of this
paper only apply to this case, that is, only to the ground state of a closed-shell
nucleus or the ground state of ‘nuclear mati«r’; The states ¥, occupied in @, will
be called unexcited states, and all the higher states ¥, will be called excited states.
Thus for ‘nuclear matter’ with a Fermi morzerntum kg, an unexcited state means
one with momentum k< ky, an excited state one with k> kp. An eigenstate ® of
H, can now be described by enumerating all :z:e excited states which are occupied,
and all the unexcited states which are not oceonied. An unoccupied unexcited state
is regarded as a ‘hole’, and the theory will 2=zi with particles in excited states and
holes in unexcited states. This treatment iz z-.zlogous to the theory of positrons,
with @, as the ‘vacuum’ state. An unexci:=: state is automatically regarded as
occupied and so excluded for other particles. =7. <35 a hole in that state is introduced
explicitly. Thus the chief effect of the exc..:..r principle is emphasized by this
description. This is the essential difference -z the theory of positrons, in which

there is symmetry between particles anc z- »= -In this theory the asymmetry
between particles and holes is emphasizec 7T+, introduce this method formally
€quations (2-8) and (2-9) are retained, but 1=z .- ~erpretation of 3}, 5, for unexcited

¥, is altered. 7, willnow be the operator cr:~.-.z a hole in state y,,, },, the operator
destroying a hole. ' :

The following derivation of the perturbsz..r. formula uses time-dependent per-
turbation theory in the interaction represerz:~.~.-.. In this way certain of the results
needed appear more naturally than in a corz:; -2+ time-independent presentation.
Let @, be the ground state of H, as describes <~ ve, assumed to be non-degenerate,
and let ", be the lowest cigenstate of H. ¥ v-__ =« derived from @, by adiabatically
switching on the interaction H, over the 1t ;»zerval —oo to 0. For this case of

a discrete series of eigenstates with a unicus zvnnd state the adiabatic theorem
can be proved in the following form (Gell-X.: - % Low 1951). _ :
Define ‘ Hy(t) = e'Bo Hyerifloteat, (2-10)
N . N i - : .
alld let Ua = z ( e i)n f R HI(LI.)H!(Q) ves Hl(t‘n) dtl oo d"ﬂ’ (2'1 l)
n=0 .

058>t >tn
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As a—> 0.the unitary operator.U, describes the adiabatic process.

U,o,
Let Yo = lim - 20
= a0l® | U, |¢o> (=12
By using Feynman graphs this limit w. 1lI be shown to exist and an explicit expressior:
derived for it. Then the adiabatic theorem states that

where ' H,®, = E,®, (214
(Do | H,U, | Bg) - )

d H, = lim Zal "0/ (215
an AE <(D0| III}0> <(D IUI(D0> : (21 )

m
m r
Ficore 1. In all the graphs the direction FIGURE 2

of increasing time is upwards.

The required perturbation formulae for V', and AE will be obtained on carrying vut
the time integrations in the expression for the limits in equations (2:12) and (2:15}.
H,(t) is derived from equation (2-9) for H, by substituting 7,(t) for 9,,, where

ﬂn(t) = ”n e-‘En‘ . (2’ 1o

and then multiplying by e*. The expression (2:11) for U, then becomes a sum !
products of v and ¥ matrix elements, ei®t and e* factors and operators 7' and 7.
Analysis of the products of operators by the same algebra as is used in provin:
Wick's theorem (Wick 1950) leads to the following expression for U, , as a sum ¢!
terms represented by Feynman graphs. Each graph represents a series of H!:
interactions. A particle in an excited state is represented by a line in the directivn
_of increasing time. A hole in an unexcited state isrepresented by a linc in the oppost't
direction. A matrix element {rs |.v|mn} in H,(t) is represented as in figure 1. Thi< -
for the case in which ,,, ¥,, ¥, are excited states and ¢, an unexcited state. It
represents an interaction between two particles in which one is scattered irnr‘
¥/ to 37, while the other jumps from 17, into ¥, leaving a hole in y,,. With this graj-
is associated a time factor_e!®rtEsEu-Eiled The other combinations of excitr
and unexcited states 17, ¥, ¥, are represented similar ly.

A matrix element (r[ V| m} is represented as in ﬁgure 2. This shows a parti -
scattered from state i, to i, by V, both states unexcited. Initially there-wasa b
in state 3/, otherwise the interaction is excluded, and finally there is a hole &
state 7.
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There are further possibilities which do not occur in positron theory. Here
the unexcited states are occupied by real particles not explicitly represented in the
graphs, but interacting with each other and with the particles represented in the
graphs. These particles will be called passive unexcited particles. Their interactions
are the most important ones present, and it is these interactions which must be

________O,,

Ficure 3

allowed for in“the choice of V. They are represented as in figure 3. This shows a
particle scatteréd from excited state ¥, to excited state i, by the particle in the
unexcited state i, which remains in the same state after the interaction. (In
‘nuclear matter’ this is ‘forward’ scattering.) Figure 3 corresponds to a factor

{rn|v| mn) eXEr—Em),

The ‘exchange’ term corresponding to this contains the matrix element (rn | v | nm)
and is represented as in figure 4. Finally, figure 5 shows the graphs representing
interactions in which only passive unexcited particles take part. The matrix elements
are for figure 5 (a), (mn | v | mn); for figure 5 (b) {mn | v | nm); for figure 5 (c) (n | V | n).

o OF ===

FIcURE 4 ‘FIGURE 5

The algebra of Wick’s theorem now gives the following rule for U, ®,. All distinct
rraphs starting with no free lines at the bottom, that is, with @, are drawn Each .
such graph consists of a number of open loops of niieleon lines and a number of closed
‘wops. For example, figure 6 contains one open loop and two closed loops. For each:
sraph multiply the v and V matrix clements and the e and e* factors and &
factor (— 1), where & is the number of internal hole lines (four in figure 6; the
‘ine labelled m is an external line) and ! the number of closed loops. A passive -
dnexcited particle loop as in figure 5(c) contributes a plus sign, counting as one
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hole line and one closed loop, while figure 5(b) has a minus sign having tw.,
-hole hnes and one closed loop. L‘a.ch V matrix element has a minus sign attach:.‘
-gince it occurs with a minus sign in H,. Attach the pairs of creation operatur-
corresponding to the external lines at the ends of each open loop with the Lol
operator to the right (7}7,, for figure 6). Finally, carry out the time integration:s.
Then U, @, is the sum of all these terms acting on @,. It is important to note that

Ficure 6

the exclusion principle is to be ignored in labelling the graphs. The major effects
of exclusion are already taken into account by the ‘hole’ picture, as described
above. The rest must not be included if the results of §3 are to be derived. Th-
algebra of the 5 operators does give this result, which is merely a careful application
to this case of the principle that intermediate states need not be anti-sym
metrized. In fact all graphs which contradict the exclusion principle are exact!s
cancelled by the corresponding ‘exchange’ graphs. However, in § 3 certain graph-
will be removed and then this cancellation will no longer occur and the grapk-
contradicting exclusion will represent important physical effects. This representa-
‘tion is essential for the derivation of the ‘linked cluster’ result.

3. THE LINKED-CLUSTER PERTURBATION FORMULA

Any part of a graph which is completely disconnected from the rest of the graph
and which has no external lines attached will be called an unlinked part. In th-
expression for U, ®, before the time integrations are carried out the lines of a grat-
can be labelled independently of each other (this is where it is essential not to has-
to take exclusion into account), and the factors attached to the interaction lines a:*
independent of each other. Now consider a graph containing unlinked parts &7
take together with it all the graphs which differ only by baving the interaction: .
the unlinked parts in different positions relative to those in the rest of the gr S
The order of the interactions in the two parts separately is kept fixed. Let the ti® B
of the interactions in the unlinked part be ¢,,1,,...,t, and in the rest be f;ts.--*-
where the order of the two parts separately is given by 0> ¢, >8> ...>f &
0>t;>ty> ... >, The sum over all the different relative positions of the two }*"""
is obtained by carrying out the time integrations with only these restrictions on "
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srder of the times and so is the product of the expressions obtained from the two
aarts separately. A graph containing no unlinked parts will be called a linked graph.
it follows that U, ®, is given by the rules of § 2 applied to the sum of linked graphs
nly, multiplied by a factor given by the sum of all graphs consisting only of un-
inked parts. This factor is just what the rules of §2 give for (@,| U, | ®). Thus
i'gas defined by (2-12) is given by taking the limit a — 0 in the sum of linked graphs -
mly

The result of carrymg out the time mtegratlons in tlns sum may be written as

1 1 1
‘I"’:i{ﬁ %E —H‘,.+inocH1"'E —H0+2iacH1Eo—-H +ie

Hl (I)o- (3’1)

2 means that the terms are to be enumerated by the linked graphs described

vbove ®, cannot occur as an intermediate state in a linked graph as the part of the
sraph below that intermediate state would be an unlinked part. Since all other

0

FI1GURE 7

®

intermediate states have energies greater than E, (this is where the limitation to
non-degenerate ground states is useful), the limit in (3-1) can be taken by putting
x = 0 as no zero energy denominators can occur. The final result can then be written

’ 1 " .
¥ 2 (gm0 &)
The energy shift AE is given by (2-15), and using the same arguments as for U, ®,,
- 3o () o0 .'
AE = §\¢0 H, EO_E)HI d)o/, (3-3)

where now 3, means summed over all connected graphs leading from @, to @, that
L .

. withnoexternallines. (3-2) and (3-3) are the linked-cluster perturbation formulae.
They differ from the usual bound state perturbation formula by having E, in the
denominator instead of the usual E,+AE. This difference is compensated by the
different enumeration of terms, that is, by summmg only oyer linked graphs and by
‘moring exclusion as described jn § 2.

A typical graph contradicting the exclusion principle is figure 7 (b). Before the
‘nlinked parts were removed this was cancelled by figure 7 (a) which has the same
atrix elements and an extra minus sign. Figure 7 (a) represents an intcraction of
‘he passive particle in the unexcited state y/,,. Many repetitions of figure 7 (b)
vombine to give the modification of the energy of state iﬁm due to this interaction.
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These linked-cluster expansions can be derived without using time-dependent
theory. ¥, can be defined to be given by (3-2). It then follows that

1

(Eo— Hy) Wy = ZHI (E___—fj’ Hl) Do (3-4)

and quo_Hz(E n ) ®,. @3)

The right-hand side of (3-5) is given by those graphs which are linked when the last
H, is removed. Some care is needed to prove this, since Wick’s theorem does not
immediately apply to the time-integrated expression (3-4). Subtracting (3-4) from
(3-5) gives

(E-EY, - TH Hl) o, (36)
Ficure 8 B )

where X' means summed over all graphs containing an unlinked part but which are
linked when the last H, line is removed. Such graphs must be of the type shown ir:
figure 8. Now the last H, line in the unlinked part may be kept fixed and a sum take:.
over the different positions of the rest of the unlinked part relative to the rest of the
graph. By using algebraicidentities on the energy denominators which are equivalent
to the separation of the time integrations in the time-dependent proof it can b~
shown that the right-hand side of (3-6) is equal to the product of ¥ with the sum
all connected closed graphs, that is, with AE as defined by (3-3). Then (3-6) gives

HY, = (Ey+AE)Y,, (3
the required result.

This method of proof has one advantage over the other in that it does not u=
time-dependent methods to prove a time-independent result. However, the tim*:
dependent proof gives the easiest way of enumerating the terms correctly and
combining the contributions of different positions of unlinked parts. The adiabat:
theorem used can be strictly proved under the conditions of this paper. The ti B
independent method has been used by the author to extend the results to excites”
and degenerate states.

4. CHOICE oF V: THE HARTREE-FOCK METHOD
The simplest way to choose V is to make it allow for the first-order interact:
with passive unexcited particles. This is done by making the graph parts in figs*”
cancel, that is, by defining

@V |my = Z{rn|o|mn)— | o] nmd}. "
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The sum is over all unexcited states 17,.. The states y, are determined L.

T + V) ¢n =,En¢‘n' (4-2)
(#1) ahd.(4'2) are the Hartree-Fock self-consistent équ'ations.‘

Fieure 9 -

This definition ensures the complete disappearance of the V¥ interacinn and the
interactions with passive unexcited states from all graphs except tuc ronnected
closed pa.rts in figure 5. These represent the first-order terms m AE. 7 “gure 5(c)
contributes” /2 (n] V | n), while figures 5 (a) and (b) contribute

33 (nn| o] mm)—Cmn || am)} = § 5 ¢n| V| ny “3)
when summed over all distinct possibilities. Also, |
B=3{®| T+l Vin). (+4)
Thus, to the first order i in v,
E= E0+AE 2(n[T|n)+1}2(n|V|n) (4-5)

This factor of % is familiar in the Hartree—Fock method.

VYO0

FIGURE 10 Ficore 11

The higher-order corrections to E are given by the sum (3-3) over ali vinnected
graphs with no external lines and with no V interactions and no interu:uons with
passive unexcited particles. The wave function ¥, is given by the suro 32} again
without the above interactions. The expression for 'F, contains terms wi- et are the
product of many factors represented by graphs like figure 10. The resui: « *hat D,
is only a very small component of ¥y, (Note that'Wgis normalized to (¢, ¥,, = 1.)
However, the corresponding correction to the energy can contain the fucwr repre-
sented by figure 11 onceonly. Bethe (1956) has shown that the exclusio: grinciple
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which limits the particles in excited states to states with momentum > kg can mak..
this correction fairly small even for strong potentials for the values of £y of intercxt.
Thus the Hartree-Fock method can give the energy quite well even for stroug
potentials. Thisis a quantitative version of the old argument that strong interaction-
would be inhibited by the exclusion principle. It applies to the energy but not to
the wave function. There are certainly strong correlations between nucleons in
a nucleus and the Brueckner theory can be used to explain them (Brueckner, Eden
& Francis 1955).

5. THE BRUECKNER THEORY

The nucleon-nucleon potential very probably has a steep repulsive core at small
distances. (This will certainly ensure saturation but a proper theory is needed to
obtain an energy minimum at the observed nuclear density.) For this v it is clearly
impossible to choose V by the Hartree-Fock method, as the matrix elements of

r ' s m’
m n|
(a) ()

Figure 12

v will have a large contribution from the core. The Brueckner theory replaces v b
a reaction matrix ¢ calculated from a two-body equation of the type

l 3 \

=0+ m ‘. (31

The idea is to derive ¥ from ¢ instead of from v. Since H, contains V, V occurs in the

energy denominator so that there is a further self-consistency requirement i

addition tothe Hartree-Fock condition on the wave functions. In fact, for ‘nuclear

matter’ the Hartree-Fock self-consistency disappears since the wave function-

must be plane waves. Brueckner (1955a) has shown that this new self-consisten¥
is important.

The procedure in terms of graphs is as follows. Corresponding to any graph wi
asingle v line in a certain position as in figure 12 (a), there are more complicated n-
in which figure 12 () is replaced by the ‘ladder’ graph of figure 12 (b). In the inte?
mediate states of figure 12 (b) both particles are in excited states. The sum of all st i
parts is given by an integral equation of the type (5-1). When figure 12 (b) occurs -
part of a larger graph the energy denominator for the intermediate state containiti-

J y/ 1 : P
Vome Ve 18 -E,—E,~Ep=E,+E,~E,—E,—3E, (5=)
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where E, is the excitation energy of the other particles present while the interaction
represented in 12 {b) occurs and 8F is the excitation energy of the complete inter-
mediate state at the beginning of the interaction. The excitation energy of a state
is the'sum of the energies K, of occupied excited states minus the sum of the energies
of unexcited states in which there are holes. The integral equation for the sum of the
terms represented by figure 12 is then

(rs|t|mnY = (rs|v|mny+ 5 (rs|v|m'n") {m'n" | t]| mn) (53)

- E,+E,—E,—E,.—d0E "’

m'n

where the sum is over ¥,,., ¢, excited states only. The solution is a matrix #(3F)
which can be used to replace v and which is finite even for a repulsive core potential.

A graph will be called irreducible if it contains no ‘ladders’ of the type of
figure 12 (b). A sequence of v interactions as in figure 12 (b) only forms a ‘ladder’ if
all the intermediate states are excited and if there are no other interactions in other

._____Q,.

Ficure 13

parts of the graph between the ends of the ladder. All graphs can be obtained by
substituting independently ‘ladders’ for each v line in the irreducible graphs. The
terms of the linked cluster expansion can thus be grouped together so that each
v matrix element is replaced by a matrix element of #(6£). dE is'the excitation energy
of the intermediate state to the right of the matrix element in the series (below it in
the graph). The sums must now be taken over linked irreducible graphs only.

Figure 7 (b) is an important type of ladder graph and is absorbed into the  matrix
element {(mn | ¢ | mn) represented in figure 13. Note that (5-3)is not antisymmetrized.
The ladder graph in which the lines of figure 12 () cross over is counted in {sr || mn).

V" can now be defined to cancel the i-interactions with passive unexcited states,
that is, by (4-1) with » replaced by ¢t. However, the cancellation cannot be complete
because of the dependence of ¢ on 8. (The procedure in this problem contrasts with
that in field theory in which the time ordering and the dependence of one part of
a craph on another are completely removed by introducing an extra energy variable
for each particle. This does not seem appropriate here.) The best that can be done is
to choose some average value of §E appropriate to the matrix element of ¢ being
evaluated.

Equation (4-5) is replaced by the following expression for the energy to first
order in £:

E=3@|T|ny+} X {{mn]|t(0)]|mn)— (nm|0)]| mn)}. (5-4)
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The (n| V|n) in E, is cancelled by the term represented by figure 5 (c) whatever
‘the definition of V. The second term in (5-4) will equal iy Y‘ {n| V| ) onlyif{n| ¥ |n)

is derived from ¢ with 8E = 0. Tlns is the most stralghtforward chcnce for the
diagonal elements of ¥V between unexcited states.

AL

FIG‘U'RE 14

Figure 14 represents a term in the energy given by
NS L P : 1Y, ) :
mp 14 w2 (= 5) ' | H0E) | > () om0 | mp, (9

where  0E=E,-E,+E,-E, (5:6)

An average of this 8% used in the definition of {m’| V|m’) will ensure as much
cancellation of this term as possible. For ‘nuclear matter’ the conservation of
momentum limits the possible values of ¥,,%,,, and ¥,, given ¥,

[ I —— — mﬁ
n n,
' (@

Ficure 15

Apart from the corrections due to the dependence of ¢ on £ the remaining graphs
for the energy all represent three or more particle interactions. It is hoped that these
are small because of the exclusion-principle limitation of the number of states to be
summed over (Brueckner & Levinson 1955; Bethe 1956). Two typical three-particle
interactions are shown in figure 15. Figure 15 (a) represents two particles jumping
from states ¥, ¥,, into excited states y,,4/,... Then the particle in ¢, falls back into
V¥, while another particle jumps from ¥, into y,,. Finally the particles in - and
¥, interact and fall back. The corresponding matrix elements are

{pm|t]| p'm")y{np' |t]| n'p){m'n’ |t |mn). (5:7)
Figure 15 (b) represents two particles j jumping from states y,, ¥, into states ¥/, ¥a~
The particle in 17, then interacts with the particle in the oceupied state 3, The
particle in 1. is scattered into ¥, while that in ¢/, jumps into the hole in i, leaving
a hole in y,,. Finally the particles in 1/, 1/, fall back into the holes in ¥, ¥, The
corresponding matrix elements are

Cnp [ t|gm’y gm |t n'p) (m'n’ | ¢ | mm). (5-5)
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